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Minimal almost convexity

Murray Elder and Susan Hermiller*

(Communicated by D. J. S. Robinson)

Abstract. In this article we show that the Baumslag—Solitar group BS(1,2) is minimally almost
convex, or MAC. We also show that BS(1,2) does not satisfy Poénaru’s almost convexity
condition P(2), and hence the condition P(2) is strictly stronger than MAC. Finally, we show
that the groups BS(1,¢) for ¢ > 7 and Stallings’ non-FP3; group do not satisfy MAC. As a
consequence, the condition MAC is not a commensurability invariant.

1 Introduction

Let G be a group with finite generating set 4, let I" be the corresponding Cayley
graph with the path metric d, and let S(r) and B(r) denote the sphere and ball, re-
spectively, of radius r centered at 1 in I'. The pair (G, A) satisfies the almost convex-
ity condition ACy ,, for a function /' : N — R, and a natural number ry € N if for
every natural number r > ry and every pair of vertices a,b € S(r) with d(a,b) <2,
there is a path inside B(r) from a to b of length at most f(r). Note that every
group satisfies the condition AC; | for the function f(r) = 2r. A group is minimally
almost convex, or MAC (called K(2) in [10]), if the condition ACs ,, holds for the
function f(r) = 2r — 1 and some number ry; that is, the least restriction possible is
imposed on the function f. If the next least minimal restriction is imposed, i.e. if G is
ACy ,, with the function f(r) = 2r — 2, then the group is said to be M’AC (called
K'(2) in [10]). Increasing the restriction on the function f further, the group satisfies
Poénaru’s P(2) condition (see [7], [13]) if ACr,, holds for a sublinear function
f:IN—R,, ie. f satisfies the property that for every number C > 0 one has
lim,_o (r — Cf(r)) = co. All of these definitions are generalizations of the original
concept of almost convexity given by Cannon in [3], in which the greatest restric-
tion is placed on the function f, namely that a group is almost convex or AC if
there is a constant function f(r) = C for which the group satisfies the condition
ACc,;. Results of [3], [10], [14] show that the condition MAC, and hence each of
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240 Murray Elder and Susan Hermiller

the other almost convexity conditions, implies finite presentation of the group and
solvability of the word problem.

The successive strengthenings of the restrictions in the definitions above give the
implications AC = P(2) = M'AC = MAC. It is natural to ask which of these im-
plications can be reversed. One family of groups to consider are the Baumslag—
Solitar groups BS(1,q) := <a,t|tat™' = a?) with |¢| > 1, which Miller and Shapiro
[12] proved are not almost convex with respect to any generating set.

In the present paper, the structure of geodesics in the Cayley graph of BS(1, q) is
analyzed in greater detail, in Sections 2 and 3. In Section 3, we use this analysis to
show that the group BS(1, 2) satisfies the property M’AC. In Section 4 we show that
the group BS(1,2) does not satisfy the P(2) condition, and hence the implication
P(2) = M’AC cannot be reversed.

In Section 4 we also show that the groups BS(1,q) = <a, t|tat™" = a%) for ¢ =7
are not MAC. Since the group BS(1, 8) is a finite index subgroup of BS(1,2), an im-
mediate consequence of this result is that both MAC and M’AC are not commensu-
rability invariants, and hence not quasi-isometry invariants. The related property AC
is also known to vary under quasi-isometry; in particular, Thiel [16] has shown that
AC depends on the generating set.

Finally, in Section 5 we consider Stallings’ non-FP3 group [15], which was shown
by the first author in [4], [5] not to be almost convex with respect to two different
finite generating sets. In Theorem 5.3, we prove the stronger result that this group
also is not MAC, with respect to one of the generating sets. Combining this with a
result of Bridson [2] that this group has a quadratic isoperimetric function, we obtain
an example of a group with quadratic isoperimetric function that is not MAC. Dur-
ing the writing of this paper, Belk and Bux [1] showed another such example; namely,
they have shown that Thomson’s group F, which also has a quadratic isoperimetric
function function [9], does not satisfy MAC.

2 Background on Baumslag—Solitar groups

Let G :=BS(1,q) = <a,t|tat™! = a?) with generators A4 := {a,a"',¢,¢7'} for any
natural number ¢ > 1. Let " denote the corresponding Cayley graph with path met-
ric d, and let % denote the corresponding Cayley 2-complex.

The complex % can be built from ‘bricks’ homeomorphic to [0, 1] x [0, 1], with
both vertical sides labeled by a ‘¢’ pointing upward, the top horizontal side labeled by
an ‘a’ to the right, and the bottom horizontal side split into ¢ edges each labeled by
an ‘a’ to the right. These bricks can be stacked horizontally into ‘strips’. For each
strip, ¢ other strips can be attached at the top, and one on the bottom. For any set of
successive upward choices, then, the strips of bricks can be stacked vertically to fill
the plane. The Cayley complex then is homeomorphic to the Cartesian product of the
real line with a regular tree 7" of valence ¢ + 1; see Figure 1. Let #: 4 — T be the
horizontal projection map. For an edge ¢ of T, e inherits an upward direction from
the upward labels on the vertical edges of @ that project onto e. More details can be
found in [6, pp. 154-160].
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Minimal almost convexity 241

Figure 1. A brick in a plane, and a side-on view of the Cayley graph I" for BS(1,4)

For any word w € A%, let w denote the image of w in BS(1, ¢). For words v, w € 4™,
write v = w if v and w are the same words in A*, and v =¢ w if = w. Let /(w) denote
the word length of w and let w(i) denote the prefix of the word w containing i letters.
Then (w='(i))"" is the suffix of w of length i. Define a,(v) to be the exponent sum of
all occurrences of # and +~! in v. Note that the relator tar~'a~? in the presentation of
G satisfies o,(tat~'a=9) = 0; hence whenever v =g w, then a,(v) = a,(w).

The following lemma is well known; a proof can be found in [11].

Lemma 2.1 (Commutation). If v,w € A* and ¢,(v) = 0 = a,(w), then vw = wo.

Let E denote the set of words in {a,a~'}", P the words in {a,a™', t}" containing at
least one ¢ letter, and N the words in {@,a™',#~'}* containing at least one ¢~ letter.
A word w = wyw, with wy € N and w, € P will be referred to as a word in NP. Fi-
nally, let X denote the subset of the words in PN with f-exponent sum equal to 0.
Letters in parentheses denote subwords that may or may not be present; for example,
P(X) := PUPX. The following statement is proved in [8].

Lemma 2.2 (Classes of geodesics). A word w € A* that is a geodesic in T must fall into
one of four classes:

(1) Eor X,

(2) N or XN;

(3) Por PX;

(4) NP, or NPX with a,(w) = 0, or XNP with a,(w) < 0.

Analyzing the geodesics more carefully, we find a normal form for geodesics in the
following proposition.
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242 Murray Elder and Susan Hermiller

Proposition 2.3 (Normal form). If w € A* is a geodesic in G = BS(1, q), then there is
another geodesic w € A* with w = W such that for w in each class, W has the following
form (respectively).

(1) w=a' for|i| < C; where Cy:= |3+ 1] if ¢ > 2 and C; :=3, or w = wg € X.

2) w=wot ta™ ...t a™ with |mj| < 4] for all j, e =1, and either wy = a’ for
lif < CyorwyeX.

(3) w=a"t...a"1twy with |mj| < || for all j, =1, and either wy=a' for
||\qurwoeX.

(4) Either w=1~¢a™ 1™ ...a™twy with 1 <e < f, or w=wor 'a™ ...1"'a"t/
with 1 < f < e, such that |m,| < |4 for all J, and either wy = a’ for |i| < C, or
wo € X. Note that if 6,(w) = 0 then e = f and each expression is valid.

In every class the word wy € X can be chosen to be of the form either

wo = @'t Yab L d T d Y or o wy = M . td et

with |k;| < |4] forall j,1<|s|<q—1ifqg>2,2<|s|<3ifg=2,and h>1

Proof. Note that for the natural number ¢, we have g = L% + IJ + [g — 1].

For a geodesic w in class (1), if we E, then w=a' for some i. If ¢ =2,
then a*® = ra*3t~! so that |i| <6, and the words a*“*%) have normal form
ta**t'a** e X for k =0 and k = 1. If ¢ > 2, then the relation tat~' = a? can be
reformulated as

PE(ERR IR

=g [a _l ( __l—l )

If ¢ is even, then a=#+2) is not geodesic, and so |i| < |£+ 1. On the other hand, if ¢ is
odd, then

gt ) —c a1 72

so that a2 is not geodesic; hence |i| < [24+1) + 1, and the words a*( [$+1]+1)
have a normal form in X.

Next suppose that w is a geodesic in class (2). Then we (X)N, and so
w=wit talt'a" .. .t al for some word w) in class (1), e > 1, and integers /.
Again we reformulate the defining relation of G, in this case to

latE — gt 1

If ¢ is odd, then we may (repeatedly) replace any occurrence of gt by
at'r1a¥ 51 If ¢ is even then +~'a* Y is not geodesic, and so |l;| < |4 for all j
and replacements are not needed. In both cases, then, we obtain a geodesic word of
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the form wgr~ta™t~'a™ ... 17 a™ with each |m;| < |1| and w{ in class (1); to form
the normal form W, then, replace w( by its normal form.

The normal form for geodesics in class (3) is established in a very similar way,
using the relation a*l5U 7 =¢ a5 g,

Suppose next that w is a geodesic in class (4) with ¢,(w) > 0. Then

w=t"ta" . dervaliar L alw)

with wy in class (1), 1 < e < f, and each k;, /; € Z. First we use Lemma 2.1 to replace
w by the geodesic word

t~Ca' kel e g epgtal-er L alw)

To complete construction of the normal form w from this word, we replace the sub-
word a’t...a"tw] by its normal form from class (3).

The constructions for the normal forms of geodesics w in class (4) with o,(w) < 0,
and of geodesics wy € X, are analogous.

3 The group BS(1, 2) satisfies M'AC

Let G :=BS(1,2) = <a,t|tat™! = a*) with generators 4 := {a,a!,¢,t7'}. In this
section we prove, in Theorem 3.5, that this group is M’AC. We begin with a further
analysis of the geodesics in G, via several lemmas which are utilized in many of the
cases in the proof of Theorem 3.5.

Lemma 3.1 (Large geodesic). If' w is a geodesic of length r > 200 in one of the classes
(1), (2) or (3) of Proposition 2.3 and |a,(w)| < 2, then w is in X, XN or PX, respec-
tively. Moreover, the X subword of w must have the form wyw, with wy € P and w, € N
such that a,(w1) = —a,(w2) > 10.

Proof. Suppose that w is a geodesic in E, N or P of length r > 200, and |o,(w)| < 2.
Then w contains at most two occurrences of the letters 7 and #~'. As mentioned in the
proof of Proposition 2.3, we have a*® = ta*3t~!, and so a’ is not geodesic for |j| > 6.
Hence w contains at most 15 occurrences of the letters ¢ and a~! interspersed among
the %! letters. Then /(w) < 17, giving a contradiction.

Given a word wye X, there is a natural number keIN with wy =g a¥;
write Wy := a*. If w is a geodesic word in EUN U PU NP, then let w := w. Com-
bining these, for any geodesic word w = wow; (or w = wiwg) with wye X and
w1 € NUPU NP, define w := wow; = a*wy (or w := w1y = wia¥, respectively). Then
we NUPUNP, and the subword w; is geodesic.

Lemma 3.2. If w is a word in NP, NPX or XNP, and W contains a subword of the form
t~1a?t with i € Z, then w is not geodesic.
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244 Murray Elder and Susan Hermiller

Proof. The word w can be written as w = wyw;w, with w; € NP and each of wy and
ws in either X or E. Since w = Wwow, W, contains the subword ¢~'a%*t € NP, the word
t~1a*t must be a subword of w;, and hence also of w. Since t~'a%t =¢ a’, this sub-
word is not geodesic, and hence w also is not geodesic.

Lemma 3.3. If w is any word in NP or NPN and w =g 1, then w must contain a sub-
word of the form t~'a*t for some i€ Z.

Proof. Since G = BS(1,2) is an HNN extension, Britton’s Lemma yields that if
w e NP(N) and w =¢ 1, then w must contain a subword of the form ta’t~! or t~'a%t
for some i € Z. If w e NP then w must contain the second type of subword.

If we NPN, then w=wywyws with w;,w3; € N and w, € P. Since a,(w;) <0
and 0 = o,(1) = o,(w1) + a,(w2) + 7,(w3), we have a,(w2) > a,(w3) and wow; € PX.
Then wywsz = waws with wge P and ws € X, and we have wywyws € NP with
wiwaws =g w =g 1. Now Britton’s Lemma applies again to show that the prefix
wiws of w must contain a subword of the form ¢~ 'a?¢ for i € Z.

Lemma 3.4. If w and u are geodesics, we NPUXNPUNPX, a,(w) < o,(u), and
1 <d(w,u) <2, then ue NPUXNPUNPX, and for some wy,u; € N and wy,u, € P
with o,(wy) = 6,(uy), W = wiw, and 4 = uju,.

Proof. The definition of w shows that we can write w = wiw, with w; € N and
wy € P. Let y label a path of length 1 or 2 from W to &; since a,(w) < a,(u),
then y € EU P. Proposition 2.3 says that ue EU PUN U NP. Since w is a geodesic,
Lemma 3.2 implies that # cannot contain a subword of the form ¢~'a?t for any in-
teger i. Then Lemma 3.3 says that the word Wwyi—!, which represents the trivial ele-
ment | in G, cannot be in NP(N). Therefore ¢ EUPUN, and so # € NP. Hence
ue NPUXNPUNPX.

We can now write #u=uwuu, with w3 eN and wu,eP. The word
4 Yy = u5'uy'wiwyy is another representative of 1. Repeatedly reducing subwords
ta’t™! to a¥ in the subword v := uy'w; € PN results in a word € EUPUN. Then
1 =¢ u; 9w,y € NP(N), and so this word must contain a subword of the form !4t
for some integer i. Since w and u are geodesics, wyw; and u5 'uy! cannot contain such
a subword. Therefore we must have ¢ € E. Hence a,(w;) = o,(u;).

We split the proof of Theorem 3.5 into ten cases, depending on the classes from
Proposition 2.3 to which the two geodesics w and u belong. In overview, we begin by
showing that the first three cases cannot occur; that is, for a pair of geodesics w and u
of length r in the respective classes in these three cases, it is not possible for d(w, &) to
be less than 3. In Cases 46, we show that a path J can be found that travels from w
along the path w~! to within a distance 2 of the identity vertex, and, after possibly
traversing an intermediate edge, 0 then travels along a suffix of u to . In Case 7 we
show that the path J can be chosen to have length at most 6, traveling around at most
two bricks in the Cayley complex. In Case 8 there are subcases in which each of the
two descriptions above occur, as well as a subcase in which the path J initially follows
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the inverse of a suffix of w from w, then travels along a path that ‘fellow-travels’ this
initial subpath, and then repeats this procedure by traversing a fellow-traveler of a
suffix of u, and then traveling along the suffix itself to #. In Cases 9 and 10, the paths
o0 constructed in each of the subcases follow one of these three patterns.

Theorem 3.5. The group G = BS(1,2) = {a,t|tat™" = a*) is M'AC with respect to
the generating set A = {a,a™',t,t='}. In particular, if w and u are geodesics of length
r> 200 with 1 < d(w,a) < 2, then there is a path ¢ inside B(r) from w to i of length at
most 2r — 2.

Proof. Suppose that w and u are geodesics of length r > 200 with 1 < d(w,a) < 2.
Using Proposition 2.3, by replacing w and u by w and # respectively, we may assume
that each of w and u is in one of the normal forms listed in that proposition. Using
Lemma 3.1, we may assume that neither w nor u is in E.

Let y be the word labeling a geodesic path of length at most 2 from #w to #, so that
wyu~! =¢ 1. Since d(w,it) > 1,

ye{at! ' o art a1t et 1)

Then y is in one of the sets £, P or N.
We divide the argument into ten cases, depending on the class of the normal forms
w and u from Proposition 2.3, which we summarize in the following table.

Case Class of w | Class of u || Case Class of w | Class of u
Case 1 | (4) (1) Case 6 | (3) (3)
Case 2 | (4) (3) Case 7 | (2) (2)
Case 3 | (2) (3) Case 8 | (1) (3)
Case 4 | (1) (1) Case 9 | (2) 4)
Case 5 | (1) (2) Case 10 | (4) 4)

This table represents a complete list of the cases to be checked. In particular, if w is
in class (2) and u in class (1), then the inverse of the path in Case 5 will provide the
necessary path d, and similarly for the remainder of the cases.

Case 1: w is in class (4) and u is in class (1). Then w is in either NP, NPX or XNP,
and ue X. Since we NP, ue E, and the path y is in either £, N or P, then
1 =g wyu~! = wyii ! € NP(N) (that is, replacing the X subwords of w and u by
powers of ). By Lemma 3.3, wyia~! contains a subword of the form t~'a*t e NP,
which therefore must occur within w. Then Lemma 3.2 says that w is not a geodesic,
which is a contradiction. Hence Case 1 cannot arise.
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Case 2: w is in class (4) and u is in class (3). Then w is in either NP, XNP or NPX,
and u € P(X). In this case 1 =g wyu ' € NPN, and the same proof as in Case 1
shows that Case 2 cannot occur.

Case 3: w is in class (2) and u is in class (3). Then we (X)N and u € P(X). Since
a,(w) < 0 and o,(u) > 0, we must have o,(w) = —1, o,(u) = 1, and y = t>. Lemma
3.1 says that w e XN, and u € PX. Since w is in normal form, w = w = woyt~'a’ with
lil <1 and wy € X, and similarly u = a/tuo with |j| < 1 and uy € X. Then

1 =g wyi ' = wot 'a'Piiy't"'a’ e NPN.

Lemma 3.3 then says that wot~'a’t?i; 't~ 'a™/ contains a subword of the form 7~'a*¢
for some s € Z, so i must be a multiple of 2, and hence i = 0. Using the last part of
Proposition 2.3, we can further write the normal form for wy € X as wy = wy¢~!, and
so w=w;t~2. Then u =g wy =g w(r — 2), contradicting the hypothesis that u is
a geodesic word of length r. Thus Case 3 does not arise.

Case 4: Both w and u are in class (1). Then w and u are both in X. From Propo-
sition 2.3 the normal forms w =W and u = @& can be chosen of the form w = ¢"w,
and @ = t'u; with h,i >0 and w;,u; € N. Then w and u have a common prefix
t =w(1) = u(1), and the path 6 := wi't=("=V¢=ly; from w through w(l) to @ has
length 2r — 2 and stays inside B(r).

Case 5: w is in class (1) and u is in class (2). Then w e X and u € (X)N. In this case
a(w) =0, o/(y) = o/(w ) = a,(w) + 7,(u) = 5,(ut), and o,(u) < 0, so that o,(u) is
either —1 or —2. The hypothesis that r > 200 and Lemma 3.1 imply that u € XN.
Then both of the normal forms Ww and # can be chosen to begin with #, and the same
proof as in Case 4 gives the path 6.

Case 6: Both w and u are in class (3). In this case both w and u are in P(X). Without
loss of generality assume that o,(w) < o,(u), and hence ,(y) = 0 and y € EU P. Since
both w and u are in normal form, w = a’twywy and u = a’tujuy with wi,u; € PUE;
wo, o € X UE; and ||, |j| < 1. Then

1

1 =g u'wy=¢ dalul’ t~Ya" T twywoy € NP.

By Lemma 3.3, ug'uy't='a’~tw oy has a subword of the form t~1a*, so i —j is a
multiple of 2 and hence either i = j with 0 < |i| < 1 or i = —j with |i] = 1.

If i=j then w and u have a common prefix a’t = w(1+ |i]) = u(l + |i|). The
path & := wy 'wiluug from i follows the suffix wiwy of w backward to w(1 + |i|) and
then follows the suffix uju¢ of u to &, remaining in B(r).

If i = —j with |i| = 1, define the path

0= walw(la”'uluo =G walw]’lt’la’ia”'tulug =wlu =G ¥-
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Then & labels a path of length 2r—3, traveling along w™!

long from W to
wo(r —2) = w(2), then along a single edge to wo(r — 1) = u(2), and finally along a

suffix of u to @, thus remaining in B(r). (See Figure 2.)

g

Figure 2. Case 6. w = a’twywg, u = a” tujug

Case T: Both w and u are in class (2). In this case, both w and u are in (X)N. We
can assume without loss of generality that o,(w) < ¢,(u), and so again o,(y) > 0 and
ye EUP.

From Proposition 2.3 we have w=wowit 'a’ and u=uouit 'a’/ with
wo,ug € XUE; wi,uy e NUE; and ||, |j| < 1. Thus

1 =¢ ﬂ)yffl = Wovvlt’laiya’jtuflﬂal e NP.
By Lemma 3.3 the latter contains a subword of the form ¢~ 'a*t, and so ¢ la’ya™/t
must contain this subword.
Since y € EUP, we have y e {t,£*, ta*! a*'t,a*! a*?}, and we may divide the

argument into four subcases.

Case 7.1: y € {t,a*'t}. Then t~'a*t must be a subword of t~'a’y. If y = ¢, then since
lil <1 we have i = 0 and w = wow; ¢!, hence

u=¢wy=¢w(r—1).
If y = at't, then |i| = 1, and y = a®'t. If y = a't, then
u=¢wy=w(r—2)t"'aa't =g w(r—2)a'.
Finally, if y = a~'¢, then

u=gwy=wr—2t"aa "'t =g w(r—2).
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Each of these three options results in a contradiction to the fact that u is a geodesic of
length r, and so Subcase 7.1 cannot occur.

Case 7.2: y € {t*,ta*'}. In this subcase, ~'a*t must be a subword of r~'a't again,
and so i = 0 and w = wow;¢~!. Note that y(1) = ¢ and wy(1) =g w(r — 1). Then y is
a path of length 2 inside B(r) from w to u. In this subcase, we may define the path
0 :=.

Case 7.3: y € {a*'}. Write y = a* with |k| = 1. Recall that 0 < |i| < 1.
If i = 0, then 7~'a*¢ must be a subword of 1~ 'a¥a~/t, hence 2| (k — j) and |j| = 1.
Then y = a®/. If y = a/, then

-1 1

w=¢uy ' =ulr—2)t"'ala? =g u(r —2)t7",
contradicting the length r of the geodesic w. Thus y=a7/. The word
0 :=ta/t 'a’ = a~/ labels a path from  to @ of length 4. Since wo(1) =g w(r — 1)
and wo(2) =g u(r — 2), the path J stays inside B(r), and hence satisfies the required
properties. (See Figure 3.)

aj

Figure 3. Case 7.3. w = wowi ™!, u = uouit~'a’

If |i| = 1, then we can write y = a*. If y = a™, then u =g wy =¢ w(r — 1), again
giving a contradiction; hence y = a’. Note that the word ¢~ 'a¢*¢t must be a subword
of t71a*a~/t, hence 2| (2i —j) and j = 0. Write 6 := a~'ta’t ™' =5 a'; then ¢ labels a
path of length 4 from w to @, with wd(2) =¢ w(r — 2) and wd(3) =¢ u(r — 1), and so
the path remains in B(r) as required.

Case 7.4: y € {a**}. Write y = a** with |k| = 1. As in the previous subcase, we con-
sider the options i = 0 and |i| = 1 in separate paragraphs.

If i = 0, then +~'¢*¢ must be a subword of +~'¢**a~/t, and so j = 0. Then the path
of length 3 labeled by 6 := ta*t~! from ¥ to @ traverses the vertices represented by
wo(l) =g w(r — 1) and wo(2) =¢ u(r — 1), hence remaining in B(r).
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If |i| = 1, then y = a**. If y = a=% then wy(1) =g w(r — 1), and so we may define
0:=1.

If lii=1 and y=a*, then ¢ 'a*t must be a subword of t~'a¥a~/t. Thus
|/l=1, and so j=+i. If j=1i, then wy(l) =g u(r — 1), hence again the path
o:=y has the requlred properties. If j = —i, then the path of length 6 labeled
by 6 :=a'ta*t7'a~" =g a* starting at W ends at . Since wd(2) =g w(r —2) and
wo(4) =g u(r — ), this path also remains within B(r).

Case 8: w is in class (1) and u is in class (3). Then w e X and u € P(X). In this case
a(w) =0, 0,(u) >0, and o,(u) = 0,(w) +a/(y) = a:i(y), sothat 0 < g,(u) = a,(y) < 2.
Thus y € P, and so y € {¢, ta*!, 2, a*'t}.

Suppose that y e {¢, ta*! tz} By Proposition 2.3 and Lemma 3.1, the normal
form w can be chosen in the form w = wyt" with w; € P and 4 > 10. Then the geo-
desic u of length r cannot represent wt =g w(r — 1) or wt> =g w(r —2), thus y # ¢
and y # ¢. For y = ta*!, since wy(1) =g w(r — 1), we may define J := y.

Suppose for the rest of Case 8 that y = a*!'t and write y = a™¢ with |m| = 1. Prop-
osition 2.3 says that the normal form w can also be chosen in the form w = twot~'a’
with wp € X and 0 < |i| < 1. If i = m, then

u=gwy=twot 'a"a"t =¢ w(r —2)a"™,

and if i = —m, then
u=g twot la"a"t = w(r —2),

both contradicting the geodesic length r of u. Then i = 0 and w = fwor~! with wy in
X. We also have g,(u) = g,(y) = 1, and Lemma 3.1 implies that u € PX, and so we
have the normal form u = a’tuy with ug in X and |j| < 1.

If j =0 then w and u have a common ¢ prefix, and the path 6 := rwj'uy has the
required properties.

Suppose for the remainder of Case 8 that |j| = 1. Then either y = a’/t or y = a ™/t
we consider these two subcases separately.

Case 8.1: y = a’t. Applying Lemma 2.1 to commute the subwords in parentheses
with zero f-exponent-sum, we have

1= wyu" = twot (@’ (tug 't a™ =g twouy't7!,
which yields that wy =g ug. By Proposition 2.3 we can replace each subword
with a normal form wg = ug = vta*t™” such that 2 < |k| <3 and ve P with
a,(v) = p — 1. Since r > 200, Lemma 3.1 implies that p > 10. Let s := sign(k). Then
w = tota®st=(+) and u = a/tta*ser .
Consider the path 6 := t?a= >t Pa/t”a*t'~P starting at w. Using Lemma 2.1 we
have

0= (a1 (at"a® PV =; (/) (tPa >t ") Pa®t P = alt =y,
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and so 0 labels a path from w to @. This path J both follows and ‘fellow travels’ suf-
fixes of w and u; see Figure 4 for a view of this path, shown in shading, when k and j
have the same sign.

Figure 4. Case 8.1. w = tota*t 7', u = a/twta*t™?, y = a’t

In order to check that ¢ remains in the ball B(r), we analyze the distances from 1
of several vertices along the path d, together with the lengths of the subpaths between
the vertices. The prefix ¢ of ¢ is the inverse of a suffix of w, and so starting from w
the path ¢ follows the path w backward. Then d(1, wd(i)) =r —i for 0 <i < p and
wo(p) =g w(r — p). The point wé(p + 1) must then also lie in the ball B(r — (p — 1)).
Since

wo(p+2) = wtla™ =g w(r —p)a=>

1

=g w(r—p)ta™t™ =g w(r— (p+2))t7},

the point C := wd(p + 2) must lie in the ball B(r — (p + 1)). Then the initial segment

of ¢ of length p + 2 from w to C lies inside B(r).
Similarly, the suffix =7~ of ¢ is also a suffix of u, hence

d(1,wGBp+5+i) =r—(p—1)+i
for0<i<p—1land wo(3p+5) =g u(r—(p—1)). We have
Wo(3p+4) € B(r— (p - 2)).
Since

wo(3p +3) =g wo(3p + 5)41_2‘Y =g u(r—(p— 1))m—xt—1

=¢ a1 =g u(r— (p+ 1)1,
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the point D := wd(3p + 3) must lie in the ball B(r — p). So the final segment of ¢ of
length p 4+ 1 from D to @ also lies in B(r).

Finally, the central section labeled 1 ?a’t? of the path § from C € B(r — (p + 1)) to
D e B(r — p) has length 2p + 1, and hence never leaves the ball B(r). The entire path
0 has length 4p + 4, whereas

r=Iv)+kl+p+3=2(p-1)+2+p+3=2p+4,
and so /() < 2r — 4. Thus the path ¢ has the required properties in this subcase.
Case 8.2: y = a/t. Applying Lemma 2.1 again yields that

1= wyu ' = twor a) (tuy' t™")a™

= twot 'tuy't™ \aTaV =6 twouy'a V!,

implying that ug =g a~wy. Substituting this into the expression for u gives
U= ajtuo =G ajta*jwo =G a*jtwo.

Note that r=/(w) =1/(wp) +2, and so a7/twy is another geodesic from 1 to .
Replacing u with a~ 1wy, we can now find the path J using Subcase 8.1.

Case 9: w is in class (2) and u is in class (4). Then we (X)N and u is in either
NP,XNP or NPX. Since w¢ (X)NPUNPX, Lemma 3.4 says that g,(w) < g,:(u).
Therefore a,(y) > 0, and so y € {t,1?,a*'t, ta*'}. We divide this case into two sub-
cases, depending on the f-exponent sum of u.

Case 9.1: o,(u) <0. By Proposition 2.3, we have the geodesic normal form
u=uout"'a"t/ withuge XUE, uy e N, |m,|=1,and 1 < f <e=|o,(u))| + 1.

Case 9.1.1: y e {t,t*,a*'t}. Then y and u share a suffix ¢, hence u(r — 1) = uy~'(1).
The geodesic w is not equal to u(r — 1), and so y # t. For y € {t*,at!t}, the path
0 := y has the required properties.

Case 9.1.2: ye {ta*'}. Write y =ta* with |k| =1. Also write w = wow; with
wo € X UE and wy; € N. Then

1 =¢ ﬁy’lﬂfl = ﬁoulflam"tfa’kt’lwflﬂial

=G ﬁoult_la”"‘tf_la_kal‘l ~0‘1 e NP.

Lemma 3.3 implies that the latter word must contain a non-geodesic t~'a*'t
subword. Then the first occurrence of a ¢ must be in wi!, and so f = 1. Write
u = uourt~'a™t = uou|t with u} := u;t~'a™ € N. Note that
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1 —2k

w=¢uy ! =g uoujta t™! =g u(r — 1)a

Let

ve=uouja ¥ = u(r — \a™* = wa*.

The vertex © satisfies o € B(r). If o € B(r — 1), then the path § := a*¢ from W to @
satisfies wo(1) =¢ v and wé(2) =g u(r — 1), and so J is a path of length 3 inside B(r)
from w to @. On the other hand, if © ¢ B(r — 1), then v is a length r geodesic in (X)N
and w =g va %, and so d(v,i) = 1. Applying Case 7.3 to the geodesics v and w in
class (2), we obtain a path &’ of length 4 inside B(r) from i to o. Let & := 6’a*t. Then
0 is a path of length 6 from w to # inside B(r).

Case 9.2: o,(u) > 0. Since o,(w) <0 and o,(w)+ 0,(y) = o,(u) we must have
o(w) =—1, o,(u) =1, and y = 1>. By Proposition 2.3 and Lemma 3.1 we also
have w = wot~'a’ with wye X, |i| <1, wy = vta*t"~! with ve P, a,(v) = p > 9,
and 2 < |k| <3. Since u=¢ wy=uvta*tPt"2a’t> and u has geodesic length
r=1w)=1v)+|k|+|i|+p+3, then i#0. Using Lemma 2.1 we see that
u=¢ (t7'a’t)(vta®t=?=")t. The word x := t~'a’tvta¥t7 is another geodesic labeling
a path from the identity to .
Let s := sign(k), and define the path

S :=a Pt a B =D 24 12 pp=1 g2~ (=)
starting at w. Using Lemma 2.1 we have
5= a it a P (12 Y (201 2) =6 2 = 5,
and so J labels a path from w to # = x. We also have /(d) = 4p + 8, and
r=Iw)=10v)+|k|+p+4=2p+6,

hence /(9) < 2r — 4.
The proof that § remains in B(r) is similar to Case 8.1. In particular, note that

wo(p+2)=wr—(p+2)eB(r—(p+2)).
Since
wo(p+4) = (vta* 71724 (a 't a7 ) =g vta* =t =g w(r — (p+4))t7!,

then wo(p +4) € B(r — (p + 3)). Also

wo(3p+9)=x(r—(p—1))eB(r—(p—1)).
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Finally, since

wo(3p+17) =¢ x(r — (p— 1))a® =¢ t 'a'tta*t'a*
= t a5t =6 x(r— (p+ 1)1,

we have wo(3p + 7) € B(r — p). Then the five successive intermediate subpaths of ¢
between i, these four points, and # are too short to allow ¢ to leave B(r).

Case 10: Both w and u are in class (4). In this case both w and u are in (X)NPU NPX.
We may assume without loss of generality that o,(w) < g,(u). It follows that
a/(y) = 0, so that y € {a®!, a®? a*'t ta*! 1, 1*}.

We divide this case into three subcases, depending on the #-exponents of w and u.

Case 10.1: a,(w) >0 and o,(u) = 0. In this case Proposition 2.3 says that we
have geodesic normal forms u, w € NP(X), and moreover w = ¢t ”'w’ and u = ¢ 72u’
with p; >0, pa >0, and w',u’ € P(X). Thus w(1) = ! = u(1), and we may define
O = w/ g —1y=(p2=1)y/

Case 10.2: o,(w) <0 and o,(u) <0. In this subcase, we have normal forms
w,u € (X)NP, and we can write

w=wowit 'a"t" and u = ugut 'a?t"

with  wo,upe XUE, wyeN, wueNUE fizl, fizl, o(w)<-f,
o:(u;) < —(f2 — 1), and |i1| = |i2| = 1. Lemma 3.4 implies that a,(w;) = o,(u;). Then

a/(wy) = o:(w1) = 1+ fi + 0u(y) = os(u) = 0,(u1) = 1 + 2,
and so fo = fi+a/(y) = fi.

Case 10.2.1: y € {t,£>,a*'t}. Since the last letter of u is ¢, the proof of Case 9.1.1
shows that y # ¢, and for y € {¢*, a*'t}, we may define J := 7.

Case 10.2.2: y e {a*'}. Write y = a* with |k| = 1. The word ¢ := t~'a*t labels a
path of length 4 from w to @ Since both words w and u end with ¢, we have
wd(1) =g w(r;) and wo(3) =¢ u(r — 1), and hence ¢ lies in B(r).

Case 10.2.3: y € {ta™'}. Write y = ta* with |k| = 1. In this subcase,

L=h+a()=A+1=2

Then the word w ends with ¢ and u ends with 2. Now

2k

u=u(r— 1)t =g wy = wta* =g wa**1t.
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Let v:=u(r — 1)a ¥ =g wa*. Then v e (X)NP and © € B(r). The remainder of the
proof in this subcase is similar to Case 9.1.2. If v e B(r — 1), then ¢ := a?*¢ has the
required properties. If v ¢ B(r — 1), then Case 10.2.2 provides a path ¢’ = t~1a?*¢
inside B(r) from i to #, and the path 6 := 6'a*t = t~'a*ta*t from  to @ satisfies the
required conditions.

Case 10.2.4: ye{a*?}. Write y=a* with |k|=1. In this case we have
o:(u) =o,(w) <0and fr = fi+a/y) =

Note that the radius r satisfies

5=

=1(w) =1(wo) +1(w1) +2+ fi = o:(w1) + 2+ f1 = 2f1 + 2.

If r=2f; +2, then w = t/1"lg" ¢t/ and u = t~/'~'a™t/1. Since W # it we have i; # iy,
and so i, = —i. Since r > 200, then f; > 1. Now

Wy =g (a2 ) (g =g (U D gk

according to Britton’s Lemma, this last expression cannot equal the trivial element 1
in G. Thus r # 2f; + 2, and so r > 2f] + 3.

Define 6 := ¢t~/ (a=")(¢t/'a**t=/")a" /1. Using Lemma 2.1 to commute the subwords
in parentheses, and freely reducing the resulting word, shows that ¢ =¢ a* = y, and
so 0 labels a path from w to . We have

I(y) =4fi +4=202fi +3) —2<2r—2.

The prefix 6(f; +2) = w™!(fi + 2) is the inverse of a suffix of w, hence

wo(fi +2)=w(r—(fi +2)) € B(r—(f1 +2)).

The word ¢/ is a suffix of both § and u, and so wé(3f; +4) = u(r — f;) € B(r — f1).
The three subpaths of 0 between w, the two points above, and i are again too short to
allow o to leave B(r).

Case 10.3: a,(w) < 0 and o,(u) > 0. Then y = ¢, 0,(w) =—1, and at(u) = 1. From
Proposition 2.3, We have the normal form w = wot '@t~ ...t 1a" P~ with either
wo € X or wy = a¥ € E for some |k| <3, p>2, and |m,| = 1. By Lemma 2.1, the
word w := wot Pa"ta™- ... ta™ is another geodesic representative of w. The nor-
mal form for u € NP(X) has the form u = t~¢a’tujug with e > 1, | j| = 1, uy € P with
o,(u) = e, and up € X U E. Lemma 3.4 shows that p = e. Replacing w by the alter-
nate normal form w, we can write

w=wot Pa’tw, and u=t"Paltuuy

such that either wye X or wy =a* for |k| <3, p=2, |ii=1, w,e PUE with
a(w)=p—2,|jl =1, u € Pwith o,(u;) = p, and up e X UE.
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We will divide Case 10.3 into further subcases, depending on the form of wy and
the length of w».

Case 10.3.1: wy € X . In this case Proposition 2.3 says that we can write wy = wstat !
with/ > 1, w3 € PUE, g,(w3) =/ — 1, and 2 < |m| < 3. Let s = +1 be the sign of m,
so that m = |mls. Then
w = wytd"S P al tw,.
The radius satisfies
r=1w3)+Iw)+|ml+14+p+3=0/(ws)+Iwa)+1+p+5=1Iw)+2l+p+4.
Applying Lemma 2.1, we obtain that
u =g wi* = (witad™ 1= (t7Pal twy1)t =g 1P a twytwyta™s =,
Then
0= f”a"thlmlal’”“"f(’*l)

is another geodesic representative of .

Case 10.3.1.1: ] = 2. Define
J = (ngtflafilpfl)(lla72mt7/)tf(pfl)aitWZIIaZmlf(lfz).

Applying Lemma 2.1 to the subwords in parentheses shows that § =g > = y, and so §
labels a path from # to & = it. The length of J satisfies

1(0) =21(wy) +4] +2p+4 < 2r—4.

We consider 4 vertices along the path 0. Note that

wo(lwa) + p+I1+1)=wr—(Uw)+p+I1+1)eBlr—(Iw)+p+i+1)).
Moreover

wo(l(wy) + p+ 1+ 3) =g wata"st'a™

=6 wata" =SV — (I(wy) + p+ 1+ 3))71,

implying that wo(I(wy) + p + [+ 3)) € B(r — (I(w2) + p + 1 +2)). The suffix (-2
of 0 is also a suffix of #, and so
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wo(2l(w2) +31+2p+6) =u(r— (I —2)) e B(r— (I - 2)).
Finally,

wo(2l(ws) + 31+ 2p +4) =g u(r — (I = 2))a > =¢ t Pa’ twytwsta™ 1 'a™>

= t Pa twytwstam =15 ,

and so

wo(2I(w2) + 31+ 2p+4) =u(r— Nt~ e B(r— (I - 1)).

The five subpaths of ¢ between w, these four points, and @ are each too short to leave
B(r).

Case 10.3.1.2: [ = 1. In this case define
0= (wy't ta 't Y (ta @) P Val twyPa.

Commuting the subwords in parentheses, we see that § =¢ > = y and ¢ labels a path
from w to &. The length satisfies

10) =21(w2) +2p+9=2l(wa) + 41+ 2p + 5 < 2r — 3.

The proof that 6 remains in B(r) is similar to Case 10.3.1.1. In particular,

wo(l(wa) + p+2)=wr—(Iw2)+p+2)eBlr—(r—(I(w)+ p+2)),
wo(lwa) + p+4)=wr—(Iw)+p+4)t1eBlr—(r—(I(wm)+p+3)),
wo(2l(wa) +2p+8) =u(r—1) e B(r— 1),

and the four successive subpaths between w, these three points, and @ are too short
for o to leave B(r).

Case 10.3.2: wo = a* with |k| <3, and I(wy) = p — 2. Since o,(w;) = p — 2, then
wy =172 and w = aktPa’t’~! with p >2 and |i| = 1. Recall that u = t?a’tujuy
with |j| = 1 and o,(u1) = p. The radius satisfies r = |k| + 2p = p + 2 + /(u1u9), and
so |k| = l(uug) — p+2=2.

If |k| = 2, then /(u1up) = p and

u=1t7Paltrt!,

We have | =g wilu™! = aktPait?~ 112~ PtV g 7tP =; a¥tPa’a7tP. Since a* #¢1,
then i # j. But aft7a'a't? =G a¥t~(?~Va'tP=1  and Britton’s Lemma says that
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the latter word cannot represent the trivial element 1, and so i # —j. Therefore we
cannot have |k| = 2.

If |k| = 3, then /(uyup) = p+ 1 and o,(u1) = p, and so the word u;u, contains one
occurrence of a or a~!. Write ujuy = t’a’t”~" for some 0 < b < p and |/| = 1. Then
wtlu! freely reduces to a*tPa't(t’a't")(a/)t?. Commuting the subwords in
parentheses and reducing again gives

1 =¢ witu "' =g d*t Pa’ta " a P70,

This word is in NP, and does not contain a subword of the form ¢#~'a?"¢, and so
Britton’s Lemma (or Lemma 3.3) implies a contradiction again. Therefore Case
10.3.2 cannot occur.

Case 10.3.3: wy = a* with |k| < 3 and I(w;) = p — 1. In this case we have the geodesic
normal forms w = a*tPa’tw, and u = t Pa’ tuyuy. The radius satisfies

r=1(wy)+ |kl +p+2=1{uuy)+p+2.
We consider two subcases, depending on whether i = j or i # j.
Case 10.3.3.1: i = j. In this subcase note that
y=1>=¢wlu=wy"t Y a7)(tPa "t 7")a tuyug.
Applying Lemma 2.1 and reducing shows that

0:= ngtl’*la*kt*“’*l)uluo =67,
and so ¢ labels a path from w to #. The length of J satisfies /(0) = 2r — 6.
As usual we analyze the distances from 1 of several vertices along the path . We
have

wo(l(wa)) = w(r — I(w2)) € B(r — [(w2)),
wo(l(wa) +2p — 2 + |k|) = u(r — l(uiuo)) € B(r — l(u1up)),

and the three intervening subpaths are each too short to allow ¢ to leave B(r).

Case 10.3.3.2: i=—j. As in Case 10.3.3.1, after commuting and reduc-
tion we have y=¢wlu=¢wy't"la*tPaJa/tuuy. Then the word
3= wy'trtwylt=P=Va/ujug = y labels a path from #w to # and has length
16) = 2r 5.

Also as in Case 10.3.3.1, we have

wo(l(wp)) = w(r — I(wy)) € B(r — [(ws))

and
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wo(l(wa) +2p — 1 + |k|) = u(r — l(u1uo)) € B(r — l(uiup)).
Now
wo(l(wy) +2p — 2+ |k|) =¢ (t Pa’t)a™ =¢ t Pat,

and so

wo(l(wa) +2p — 2+ |k|) = u(r — (I(myuo) +2))a~7t € B(r — l(ujup))

as well. The four successive subpaths of 0 between w, these three vertices, and & have
lengths too short to allow o to leave B(r). Therefore J has the required properties.

Therefore in each of Cases 1-10, either the case cannot occur or the path J with the
required properties can be constructed, completing the proof of Theorem 3.5.

4 Non-convexity properties for BS(1, ¢)
In the first half of this section we show, in Theorem 4.3, that the group

G :=BS(1,2) = {a,t|tat™! = a*)

with generators A := {a,a”',t,t7'} does not satisfy Poénaru’s P(2) almost con-
vexity condition. We start by defining some notation. Let » be a natural num-
ber with n > 100 and let w:= t"a’t™" and u := at"a’*t~ "~V (see Figure 5). Then w
and u are words of length R :=2n+ 2. Moreover, using Lemma 2.1, we have
wat = (a)(t"a*t™")t =¢ u, and so d(w, it) = 2 and the word y := at labels a path from
w to u.

o
1a wa

Figure 5. w = "a®t™", u = at"a?r "~V

Lemma 4.1. If m € Z and a'™ is in the ball B(R) = B(2n + 2) in the Cayley graph of G,
then either m = 2" or m < 2" + 271 4 272,
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Proof. For a™ € B(R), Proposition 2.3 says that there is a geodesic word v in the
normal form v = t"a*t~'a*—1+71 ... t71ak with 2 < |s| <3 and each |k;| < 1, such
that v =g a™. This word contains 2/ letters of the form #*! and /(v) < 2n + 2, hence
h < n. Also v =g a2t kimittko = gm and so m = 2"s + 2"k | + - - - + ko.

If h = n, then v = t"a**t™", and so m = +2"t'. If h = n — 1, then there are at most
four occurrences of a*! in the expression for v; that is, |s| + Y |k;| < 4. The value of
m will be maximized if s = +3, k;,_; = +1, and k; = 0 for all i < /& — 2; in this case,
m= (3)2n71 + 2n72 L 2n71 + 2n72.

Finally, if & < n — 2, then

m<2"2(3) 42" 3 (1) + -+ (1) =

and so m < 2" 4271 4 2n-2,

1

Lemma 4.2. The words w = t"a*t™",wa,wa~',wt=' and u = at"a*t="=V) label geo-

desics in the Cayley graph of G.

Proof. As a consequence of Lemma 4.1, the vertices a2""'+! and ¢2""'~! are not in the
ball B(R). The words t"a*t™"a = wa and aw both label paths from the identity to
a?""'+1 and the word wa~! labels a path from 1 to a2""'~!. Each of these words has
length 2n + 3 = R+ 1, and so all three paths must be geodesic. As a consequence, the
subwords w of wa and u of aw are also geodesic.

The element wt~! has a geodesic normal form from Proposition 2.3 given by

v="t"a’t Vab el dR !

with |/| < 1. Since a®""'t~'v~! =¢ 1, Lemma 3.3 shows that ¢’ = * with i € Z, and
thus / = 0. Hence wr~! is also geodesic.

Theorem 4.3. The group G = BS(1,2) = <a,t|tat™" = a*) is not P(2) with respect to
the generating set A = {a,a”",t,t7'}.

Proof. Let n e N with n > 100, w = t"a*t™", u = at"a*t~"~V), and R = 2n + 2. Then
w and # lie in the sphere S(R) and d(w,u) = 2. Let J be a path inside the ball B(R)
from w to @« that has minimal possible length. In particular, J does not have any
subpaths that traverse a single vertex more than once.

From Lemma 4.2, wa*! and wr~! are not in B(R), and so the first letter of the
path 6 must be 7. Let 7: % — T denote the horizontal projection map from the
Cayley complex of G to the regular tree 7' of valence 3, as described at the begin-
ning of Section 2. The vertices n(wd(1)) = n(f) and zn(i1) = n(af) are the terminal
vertices of the two distinct edges of 7" with initial vertex n(w) = =(1). Since the pro-
jection of the path ¢ begins at #(1), goes to 7(7), and eventually ends at n(at), there
must be another point P := wd(;) along the path § with z(P) = z(wd(;)) = =(1) and
1 < j < (3). Let 0; be the subpath of ¢ from w to P.
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Our assumption that 6 has minimal possible length implies that P # w.
Since #n(P) ==n(1), we have P =g a™ for some m e Z. Then Lemma 4.1 shows
that m < 2" +2""1 4+ 272 Since §; labels a path from «2""' to a™, we have
o' =g @' = ak with k = 2"t1 —m > 272 > 20-9+1 Applying the contraposi-
tive of Lemma 4.1, we conclude that ¢* is not in the ball B(2(n —4) + 2), hence
1(6;") > 2(n — 4) + 2. Therefore /(5) > R — 8, and so this length cannot be bounded
above by a sublinear function of R.

For the remainder of this section, let G, :=BS(l,q) = <{a,t|tar™! = a?) with
g = 7 and with generators 4 := {a,a”!,,t~'}. We will apply methods very similar to
those developed above, to show that these groups are not MAC.

Lemma 4.4. If m e Z and a” is in the ball B(R) = B(2n + 1) in the Cayley graph of
Gy, then either m = q" or m < 3¢" .

Proof. For a™ € B(R), Proposition 2.3 says that there is a geodesic word v in the
normal form v = t"a*r~'ak-1171 . 1~'ak with 1 <|[s| <¢—1 and |k <|%] for
each i, such that v =g @”. Then h < nand m = ¢"s + ¢" 'kj_1 + - + ko.

If h =n, then v = "a*'+™", and m = +¢". If h = n — 1, then there are at most 3
occurrences of a*! in the expression for v. The value of m will be maximized if
s = +3, in which case m = (3)¢"~!. Finally, if h < n — 2, then

m<q" 2 g-D+¢" g+ +(§) =" -+ 55— 4],

and so m < 3¢" 1.

Theorem 4.5. The group G, = BS(1,q) = <a,t|tat™" = a®) with q¢ > 7 is not MAC
with respect to the generating set A = {a,a™',t,t7'}.

Proof. Let n be a natural number with »n > 100. Let w':=¢"ar™" and
u' = at"at~"~Y_ Then w' and u’ are words of length R := 2n + 1. As a consequence
of Lemma 4.4, an argument similar to the proof of Lemma 4.2 shows that the words

w' u',w'at!, and w't~! are geodesics. Hence w’ and #’ lie in S(R). Lemma 2.1 says

that w'at = (a)(t"at™")t =g u’, so that d(w’,u’) =2 and the word y:= at labels
a path from w’ to /. Let J be a path inside the ball B(R) from w’ to u’ that has
minimal possible length.

From the information on geodesics in the previous paragraph, the first letter of
the path 6 must be 7. Let #: ¥ — T denote the horizontal projection map from
the Cayley complex of G, to the regular tree T of valence g+ 1. The vertices
n(w'6(1)) = n(7) and n(u’') = n(at) are the terminal vertices of two distinct edges of
T with initial vertex n(w’) = n(1). Consequently, there must be a point P := w'd(j)
along the path ¢ with 7(P) =n(w'd(j)) ==(1) and 1 < j < (). Write = 5,0,
where d; is the subpath of § from w’ to P.
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We have P#w =a4", and P =g, a™ for some meZ, hence Lemma 4.4
shows that m < 3¢"!. The word ¢, labels a path from a¢" to @™, and so J; =g, ak
with k =g" —m > (q—3)q"" I'>3¢"! since ¢ > 7. Then Lemma 4.4 says that
either k = ¢" or a* is not in the ball B(2n + 1).

If a* is not in the ball B(2n+1), then /(d;) >2n+1=R. Note that
w't™! =aw' =g, a?*'. The word d,¢! labels a path from P =a™ to a4"+!, and so
ot =g, a*M! With k +1 > 3¢"~!'. Then [(d,¢7") > R as well. Thus /(6;) > R and
100) = R+ 1+ R=2R+1. Since there is a path w'~'u’ of length 2R inside B(R)
from w’ to u’, this contradicts our choice of 6 with minimal length.

Then the path ¢ satisfies k = ¢”, so that P = 1. Therefore ¢ reaches the vertex
corresponding to the identity, and the length of J is 2R.

Corollary 4.6. The properties MAC and M'AC are not commensurability invariant,
and hence also not quasi-isometry invariant.

Proof. The subgroup of index 3 in BS(1,2) = {a, | tat™' = a*) generated by a and
t3 is isomorphic to BS(1,8). Theorem 3.5 shows that BS(1,2) is M’AC and hence
MAUC, and Theorem 4.5 proves that BS(1, 8) has neither property.

5 Stallings’ group is not MAC

In [15], Stallings showed that the group with finite presentation

(a'b)’ =a'b,(a'c) =a ¢, (a _ld) a'dy
does not have homological type FP;. In our notation, [a,c|:=aca'c™! and
(a7 'b)* :=sa='bs~'. Let X := {a,b,c,d,s,a " ,b~',c7!,d~! 57!} be the inverse closed
generating set, and let I" be the corresponding Cayley graph of S.
Let G be the subgroup of S generated by Y := {a,b,c,d,a”',b", ¢!, d7'}, and
let A be the corresponding Cayley graph of G. Then G is the direct product of the

non-abelian free groups <a,b) and {c¢,d). Let H be the finitely generated subgroup
of G given by H = <(a~'b,a 'c,a”'d>.

Lemma 5.1. The group H consists of all elements of G that can be represented by a
word over Y of exponent sum zero. Moreover, every word, over X or Y, representing
an element of H must have exponent sum zero.

Proof. Using the fact that ¢ commutes with both ¢ and d, we have ca ', da~' € H,
and so ac™',ad™" € H. Using the fact that » and ¢ commute, we have

ab™' =g a(c'e)b! =5 (ac b7l e =g (ac™ )b (aa™Y) e

=5 (ac @ 'b) ae)e H
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as well. Taking products of the form A; '/, with
hi,hy e {a'ba'c,a'd,ab™" ac™" ad™'}

we see that 11’112, I l{l € H for all positive letters /i, € {a, b, c,d}. Finally, consider
an arbitrary word w = [{* ... [’ with [; € {a, b, c,d}, & = +1, and ), ¢ = 0. For each
i, there is a letter m € ¥ which commutes with both /" and /7. Repeating the tech-
nique above of inserting the inverse pair mm ™' between [/ and /% and applying the
commutation relations as needed, we can write w as a product of elements of expo-
nent sum zero of the form m;m, with m; € Y. Then w € H. The second sentence of
this lemma follows from the fact that the exponent sum for each of generators of H

and each of the relators in the presentation for S is zero.

Let ¢ : H — H be the identity function. Then S is the HNN extension S = Gx,
with stable letter s, and s commutes with all of the elements of H.

Lemma 5.2. Let we X *.

(1) If w is a geodesic in T, then the word w cannot contain a subword of the form sus™"

or s lus with i e H.
(2) If we G and w is a geodesic in T, then w € Y* and w is a geodesic in A.

(3) If we Y* and w is a geodesic in A, then w,sw and ws are all geodesics in T.

Proof. Part (1) follows directly from the fact that for it € H, sus™! =g s 'us =5 u. In
parts (2) and (3), suppose that g € G, v is a geodesic word over X in I" representing ¢,
and we Y* is a geodesic in A with i = g also. Then vw~! =g 1. Britton’s Lemma
applied to the HNN extension S says that if either s or s~ occurs in vw~!, then vw™!,
and hence v, must contain a subword of the form sus~! or s~'us with &z € H, contra-
dicting part (1). Therefore v € Y*. Since v,w € Y* and v is is a geodesic in A, then
[(v) < I(w) Similarly since v,w € X* and w is a geodesic in I" we have /(w) < [(v).
Thus v is also a geodesic in A, and w is a geodesic in I.

For the remainder of part (3), suppose that 4 is a geodesic representative of swin I'.
Then w~'s 'y =g 1. Britton’s Lemma then says that w—'s~!x must contain a sub-
word of the form sus~! or s~'us with & € H. Since u is a geodesic, part (1) says that
sus~! or s™'us cannot be completely contained in x, and so we can write u = s,
with z; € H. Since y; and s commute, sy, =s it =s sw, hence u, ¢, =5 w and both
1, and w are geodesics representing the same element of G. Hence /(u; 1) = I(w).
Then

1) = 1) + 1+ L) = 10w) + 1 = (sw),
and so sw is a geodesic in I'. The proof that ws is also a geodesic in I is similar.

The proof of the following theorem relies further on the HNN extension structure
of Stallings’ group S. In particular, we utilize an ‘s-corridor’ to show that the path ¢
in the definition of MAC cannot exist.
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Theorem 5.3. (S, X) is not MAC with respect to the generating set X.

Proof. Let o := b~"1g"t1 and f:= sb~"Vg" and let y = b~ "*Dg" be their maxi-
mal common subword. Then « € Y*, and so & € G; in particular, the exponent sum of
o 1s zero, so Lemma 5.1 says that & € H also. Since « is a geodesic in the Cayley graph
A of the group G = F, x F>, Lemma 5.2(3) says that « is a geodesic in I". Similarly, y
is a geodesic in A and so Lemma 5.2(3) says that f = sy is also geodesic in I". Thus o
and p lie in the sphere of radius 2n + 2 in I". Since

Orlﬂ — af(n+1)bn+lsb7(n+l)an =g Saf(n+l)bn+lb7(n+l)an =g sa’l,
we have d(&, §) = 2 for all natural numbers 7.

Suppose that there is a path J of length at most 2(2n 4 2) — 1 inside the ball of
radius 27 + 2 between & and /3. Since the relators in the presentation of S have even
length, the word J must have length at most 2(2n +2) — 2 = 4n + 2.

Applying Britton’s Lemma to the product das™! =g 1 shows that & = wisw,
with Wi, wae H. Then Wi, € G=F, x F,. Lemma 5.2(2) and the direct
product structure imply that there are geodesic representatives ¢; and g, of Wy
and W, respectively, that have the form ¢; =gqi,,91,« and ¢ = q», ,q>,, with
Q45592 € {av b, a71’ bil}* and Q.q>92.0 € {C, d, Cilv dﬁl}*'

Since & and g; = w] are both elements of H, we have ag; € H as well. From the
direct product structure, there is a geodesic representative g € Y * of og; of the form
0 = 0404 With g, € {a,b,a” ' ,b~ '} and 0. 4 € {c,d,c™',d'}" (see Figure 6).

a,b

n+l
b

1 s
Figure 6. Paths in the Cayley graph of Stallings’ group

The edge in I labeled by s connecting & and &5 is part of the path J, and so this
edge must lie in the ball of radius 2n + 2 in I'. Lemma 5.2(3) says that os is a geode-
sic, hence

d(1,0)+1=1o)+1=1I(os) =d(1,05) <2n+2.

Then € B(2n+1) and /(o) < 2n + 1.
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Now I(q1) + 1 + I(q2) < I(0) < 4n + 2, and thus either /(¢;) < 2n or I(¢2) < 2n (or
both).

Case A: I(q1) < 2n. Note that
O(ql()'_] — b_(n+l)an+lqll,‘;,q1€7do-c_,tlla;.,i =FxF 1.

Hence gic,a =F, 0.,a and aq, , =F, 04,5. Since geodesics in free groups are unique, we
also have g, = 0.4
There is an integer i} with 0 < #; < 2n such that

a,, (i) = ') but g, +1) # o (i + 1),

where we write g1, ,(0) := 1 and q,, (k) := g for all k > I(¢1,,). Write q1,, = o~ (i1)r
with r e I, = {a,b). The words «,q,,, and g, are all geodesic representatives of
elements of the free group F>, and hence these are freely reduced words that define
non-backtracking edge paths in the tree given by the Cayley graph for this group. By
definition of #;, the product ag;,, freely reduces to «(2n + 2 — ij)r, with no further
free reduction possible. Then «(2n + 2 — i;)r is the unique geodesic representative in
F, = <a,b) of ugqi,,, and hence a(2n + 2 — iy)r = o,4,p.

Case A.1: i < n+ 1. In this case, q1,, = a "'r. Now ¢ = qu,,q1,, = a "rqi,, repre-
sents an element of H, and so Lemma 5.1 says that ¢; has exponent sum zero. Then
l(rq1,,) = i1. We also have 0 = 0,500 4 = a(2n + 2 — ij)rq;, . Then

o) =2 (2n+2—1i1)+i =2n+2,
contradicting the result above that /(g) < 2n + 1. Thus this subcase cannot occur.

Case A.2: iy > n+ 1. In this case, o, = b~?"*2~1)r, Since

b—(2n+2—i1)

0 = 0q,b0c,d = rOe,d

represents an element of H, this word has exponent sum zero, and so
I(roc.q) = 2n+ 2 — iy in this subcase. The word ¢ = q1, 41, , = o' (i})ro. 4 then has
length

l(ql) =1 —|—(2n—|—2—11) =2n+2,
contradicting the fact that we are in Case A.

Case B: [(¢q2) < 2n. Since o € H, o commutes with s. Then

1

- -1 -1 —1 —1p 1 —1
o=sS5 05S=g55 oqis=sS 0q15q2q, =sS Pq =sxq; -
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In this case we have g, 50,4 =pxr, b~ " Da"t!

—1
qua b

There is an integer i, with 0 < i, < 2n such that

1,1 -1
93, ,92e.d> and so Gre.d =F> Oc.d and
=p, 04,5. Uniqueness of geodesics in F, = {c¢,d) implies that qz’c{ 4 = Oc.d-

0, (b) =) but ¢! (b+1)# 1 (b +1).
Write ¢»,, = r(x "(i))”" with re F, = {a,b). The words z,qs,,, and g, are all
geodesics, and hence freely reduced words, in F,. By definition of i, the product
24, freely reduces to y(2n+ 1 —iy)r~!, with no further reduction possible. Then

22n+1— 1'2)r’1 = 0yb.

Case B.1: iy < n. In this case, ¢, , = ra”. Now ¢ = ¢2, ,42,, = ¢2, ,+a”. Recall that
¢»> was chosen as a geodesic representative of an element w; € G for which #Wwa € H.
Then ¢»a represents an element of H, and so (by Lemma 5.1) has exponent sum zero.
Therefore the exponent sum of ¢, is —1. Then /(¢»_,r) = i» + 1. We also have

0= 04004 =)(2n+1~— iz)V_IQz_,,}d~
Then
llo)z2n+1—-b)+(b+1)=2n+2,
again contradicting the result above that /() < 2n + 1.

Case B.2: iy > n. In this case, 6, , = b~?"*172);~1_ Since

wl=b) -l

0= 04p0eq=b"
represents an element of H, this word has exponent sum zero, so that
/ (r’lac,d) > 2n + 1 — ip in this subcase. Therefore the word

_ 1/ —1
& = 42,92, = 07 (x "' (in))

has length /(¢q2) = (2n+ 1 — i) + i, = 2n + 1, contradicting the fact that we are in
Case B.

Therefore every subcase results in a contradiction implying that the subcase cannot
occur. Then the path J cannot exist, and so S is not MAC with respect to the gen-
erating set X.
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