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Minimal almost convexity

Murray Elder and Susan Hermiller*

(Communicated by D. J. S. Robinson)

Abstract. In this article we show that the Baumslag–Solitar group BSð1; 2Þ is minimally almost
convex, or MAC. We also show that BSð1; 2Þ does not satisfy Poénaru’s almost convexity
condition Pð2Þ, and hence the condition Pð2Þ is strictly stronger than MAC. Finally, we show
that the groups BSð1; qÞ for qd 7 and Stallings’ non-FP3 group do not satisfy MAC. As a
consequence, the condition MAC is not a commensurability invariant.

1 Introduction

Let G be a group with finite generating set A, let G be the corresponding Cayley
graph with the path metric d, and let SðrÞ and BðrÞ denote the sphere and ball, re-
spectively, of radius r centered at 1 in G. The pair ðG;AÞ satisfies the almost convex-
ity condition ACf ; r0

for a function f : N ! Rþ and a natural number r0 A N if for
every natural number rd r0 and every pair of vertices a; b A SðrÞ with dða; bÞc 2,
there is a path inside BðrÞ from a to b of length at most f ðrÞ. Note that every
group satisfies the condition ACf ;1 for the function f ðrÞ ¼ 2r. A group is minimally

almost convex, or MAC (called Kð2Þ in [10]), if the condition ACf ; r0
holds for the

function f ðrÞ ¼ 2r� 1 and some number r0; that is, the least restriction possible is
imposed on the function f . If the next least minimal restriction is imposed, i.e. if G is
ACf ; r0

with the function f ðrÞ ¼ 2r� 2, then the group is said to be M 0AC (called
K 0ð2Þ in [10]). Increasing the restriction on the function f further, the group satisfies
Poénaru’s Pð2Þ condition (see [7], [13]) if ACf ; r0

holds for a sublinear function
f : N ! Rþ, i.e. f satisfies the property that for every number C > 0 one has
lim r!yðr� Cf ðrÞÞ ¼ y. All of these definitions are generalizations of the original
concept of almost convexity given by Cannon in [3], in which the greatest restric-
tion is placed on the function f , namely that a group is almost convex or AC if
there is a constant function f ðrÞ1C for which the group satisfies the condition
ACC;1. Results of [3], [10], [14] show that the condition MAC, and hence each of
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the other almost convexity conditions, implies finite presentation of the group and
solvability of the word problem.

The successive strengthenings of the restrictions in the definitions above give the
implications AC ) Pð2Þ ) M 0AC ) MAC. It is natural to ask which of these im-
plications can be reversed. One family of groups to consider are the Baumslag–
Solitar groups BSð1; qÞ :¼ ha; t j tat�1 ¼ aqi with jqj > 1, which Miller and Shapiro
[12] proved are not almost convex with respect to any generating set.

In the present paper, the structure of geodesics in the Cayley graph of BSð1; qÞ is
analyzed in greater detail, in Sections 2 and 3. In Section 3, we use this analysis to
show that the group BSð1; 2Þ satisfies the property M 0AC. In Section 4 we show that
the group BSð1; 2Þ does not satisfy the Pð2Þ condition, and hence the implication
Pð2Þ ) M 0AC cannot be reversed.

In Section 4 we also show that the groups BSð1; qÞ ¼ ha; t j tat�1 ¼ aqi for qd 7
are not MAC. Since the group BSð1; 8Þ is a finite index subgroup of BSð1; 2Þ, an im-
mediate consequence of this result is that both MAC and M 0AC are not commensu-
rability invariants, and hence not quasi-isometry invariants. The related property AC
is also known to vary under quasi-isometry; in particular, Thiel [16] has shown that
AC depends on the generating set.

Finally, in Section 5 we consider Stallings’ non-FP3 group [15], which was shown
by the first author in [4], [5] not to be almost convex with respect to two di¤erent
finite generating sets. In Theorem 5.3, we prove the stronger result that this group
also is not MAC, with respect to one of the generating sets. Combining this with a
result of Bridson [2] that this group has a quadratic isoperimetric function, we obtain
an example of a group with quadratic isoperimetric function that is not MAC. Dur-
ing the writing of this paper, Belk and Bux [1] showed another such example; namely,
they have shown that Thomson’s group F , which also has a quadratic isoperimetric
function function [9], does not satisfy MAC.

2 Background on Baumslag–Solitar groups

Let G :¼ BSð1; qÞ ¼ ha; t j tat�1 ¼ aqi with generators A :¼ fa; a�1; t; t�1g for any
natural number q > 1. Let G denote the corresponding Cayley graph with path met-
ric d, and let C denote the corresponding Cayley 2-complex.

The complex C can be built from ‘bricks’ homeomorphic to ½0; 1� � ½0; 1�, with
both vertical sides labeled by a ‘t’ pointing upward, the top horizontal side labeled by
an ‘a’ to the right, and the bottom horizontal side split into q edges each labeled by
an ‘a’ to the right. These bricks can be stacked horizontally into ‘strips’. For each
strip, q other strips can be attached at the top, and one on the bottom. For any set of
successive upward choices, then, the strips of bricks can be stacked vertically to fill
the plane. The Cayley complex then is homeomorphic to the Cartesian product of the
real line with a regular tree T of valence qþ 1; see Figure 1. Let p : C ! T be the
horizontal projection map. For an edge e of T , e inherits an upward direction from
the upward labels on the vertical edges of C that project onto e. More details can be
found in [6, pp. 154–160].
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For any word w A A�, let w denote the image of w in BSð1; qÞ. For words v;w A A�,
write v ¼ w if v and w are the same words in A�, and v ¼G w if v ¼ w. Let lðwÞ denote
the word length of w and let wðiÞ denote the prefix of the word w containing i letters.
Then ðw�1ðiÞÞ�1 is the su‰x of w of length i. Define stðvÞ to be the exponent sum of
all occurrences of t and t�1 in v. Note that the relator tat�1a�q in the presentation of
G satisfies stðtat�1a�qÞ ¼ 0; hence whenever v ¼G w, then stðvÞ ¼ stðwÞ.

The following lemma is well known; a proof can be found in [11].

Lemma 2.1 (Commutation). If v;w A A� and stðvÞ ¼ 0 ¼ stðwÞ, then vw ¼G wv.

Let E denote the set of words in fa; a�1g�, P the words in fa; a�1; tg� containing at
least one t letter, and N the words in fa; a�1; t�1g� containing at least one t�1 letter.
A word w ¼ w1w2 with w1 A N and w2 A P will be referred to as a word in NP. Fi-
nally, let X denote the subset of the words in PN with t-exponent sum equal to 0.
Letters in parentheses denote subwords that may or may not be present; for example,
PðX Þ :¼ PUPX . The following statement is proved in [8].

Lemma 2.2 (Classes of geodesics). A word w A A� that is a geodesic in G must fall into

one of four classes:

(1) E or X;

(2) N or XN;

(3) P or PX;

(4) NP, or NPX with stðwÞd 0, or XNP with stðwÞc 0.

Analyzing the geodesics more carefully, we find a normal form for geodesics in the
following proposition.

Figure 1. A brick in a plane, and a side-on view of the Cayley graph G for BSð1; 4Þ
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Proposition 2.3 (Normal form). If w A A� is a geodesic in G ¼ BSð1; qÞ, then there is

another geodesic ŵw A A� with ŵw ¼ w such that for w in each class, ŵw has the following

form (respectively).

(1) ŵw ¼ ai for jijcCq where Cq :¼ q

2 þ 1
� �

if q > 2 and C2 :¼ 3, or ŵw ¼ w0 A X .

(2) ŵw ¼ w0t
�1am1 . . . t�1ame with jmj jc q

2

� �
for all j, ed 1, and either w0 ¼ ai for

jijcCq or w0 A X .

(3) ŵw ¼ an0 t . . . anf�1 tw0 with jnjjc q

2

� �
for all j, f d 1, and either w0 ¼ ai for

jijcCq or w0 A X .

(4) Either ŵw ¼ t�eamf tamf�1 . . . am1 tw0 with 1c ec f , or ŵw ¼ w0t
�1am1 . . . t�1amet f

with 1c f c e, such that jmjjc q

2

� �
for all j, and either w0 ¼ ai for jijcCq or

w0 A X . Note that if stðwÞ ¼ 0 then e ¼ f and each expression is valid.

In every class the word w0 A X can be chosen to be of the form either

w0 ¼ thast�1akh�1 . . . ak1 t�1ak0 or w0 ¼ ak0 tak1 . . . takh�1 tast�h

with jkjjc q

2

� �
for all j, 1c jsjc q� 1 if q > 2, 2c jsjc 3 if q ¼ 2, and hd 1.

Proof. Note that for the natural number q, we have q ¼ q

2 þ 1
� �

þ q

2 � 1
� �

.
For a geodesic w in class (1), if w A E, then w ¼ ai for some i. If q ¼ 2,

then aG6 ¼ taG3t�1 so that jijc 6, and the words aGð4þkÞ have normal form
taG2t�1aGk A X for k ¼ 0 and k ¼ 1. If q > 2, then the relation tat�1 ¼G aq can be
reformulated as

aGð
q
2þ1b cþ1Þ ¼G taG1t�1aH

q
2�1d e�1ð Þ:

If q is even, then aGðq2þ2Þ is not geodesic, and so jijc q

2 þ 1
� �

. On the other hand, if q is
odd, then

aGðqþ1
2 þ2Þ ¼G taG1t�1aHðq�1

2 �2Þ

so that aGðqþ1
2 þ2Þ is not geodesic; hence jijc q

2 þ 1
� �

þ 1, and the words aGð q
2þ1b cþ1Þ

have a normal form in X .
Next suppose that w is a geodesic in class (2). Then w A ðX ÞN, and so

w ¼ w 0
0t

�1al1 t�1al2 . . . t�1ale for some word w 0
0 in class (1), ed 1, and integers li.

Again we reformulate the defining relation of G, in this case to

t�1aG
q
2þ1b c ¼G aG1t�1aH

q
2�1d e:

If q is odd, then we may (repeatedly) replace any occurrence of t�1aG
q
2þ1b c by

aG1t�1aH
q
2�1d e. If q is even then t�1aG

q
2þ1b c is not geodesic, and so jljjc q

2

� �
for all j

and replacements are not needed. In both cases, then, we obtain a geodesic word of
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the form w 00
0 t

�1am1 t�1am2 . . . t�1ame with each jmjjc q

2

� �
and w 00

0 in class (1); to form
the normal form ŵw, then, replace w 00

0 by its normal form.
The normal form for geodesics in class (3) is established in a very similar way,

using the relation aG
q
2þ1b ct ¼G aH

q
2�1d etaG1.

Suppose next that w is a geodesic in class (4) with stðwÞd 0. Then

w ¼ t�1ak1 . . . ake�1 t�1alf talf�1 . . . al1 tw 0
0

with w 0
0 in class (1), 1c e < f , and each kj; li A Z. First we use Lemma 2.1 to replace

w by the geodesic word

t�ealf take�1þlf�1 . . . tak1þlf�eþ1 talf�e ~ww0ta
lf�e�1 . . . al1 tw 0

0:

To complete construction of the normal form ŵw from this word, we replace the sub-
word alf t . . . al1 tw 0

0 by its normal form from class (3).
The constructions for the normal forms of geodesics w in class (4) with stðwÞc 0,

and of geodesics w0 A X , are analogous.

3 The group BS(1, 2) satisfies MOAC

Let G :¼ BSð1; 2Þ ¼ ha; t j tat�1 ¼ a2i with generators A :¼ fa; a�1; t; t�1g. In this
section we prove, in Theorem 3.5, that this group is M 0AC. We begin with a further
analysis of the geodesics in G, via several lemmas which are utilized in many of the
cases in the proof of Theorem 3.5.

Lemma 3.1 (Large geodesic). If w is a geodesic of length r > 200 in one of the classes

(1), (2) or (3) of Proposition 2.3 and jstðwÞjc 2, then w is in X ;XN or PX, respec-
tively. Moreover, the X subword of w must have the form w1w2 with w1 A P and w2 A N

such that stðw1Þ ¼ �stðw2Þ > 10.

Proof. Suppose that w is a geodesic in E;N or P of length r > 200, and jstðwÞjc 2.
Then w contains at most two occurrences of the letters t and t�1. As mentioned in the
proof of Proposition 2.3, we have aG6 ¼ taG3t�1, and so a j is not geodesic for j jjd 6.
Hence w contains at most 15 occurrences of the letters a and a�1 interspersed among
the tG1 letters. Then lðwÞc 17, giving a contradiction.

Given a word w0 A X , there is a natural number k A N with w0 ¼G ak;
write ~ww0 :¼ ak. If w is a geodesic word in E UN UPUNP, then let ~ww :¼ w. Com-
bining these, for any geodesic word w ¼ w0w1 (or w ¼ w1w0) with w0 A X and
w1 A N UPUNP, define ~ww :¼ ~ww0w1 ¼ akw1 (or ~ww :¼ w1 ~ww0 ¼ w1a

k, respectively). Then
~ww A N UPUNP, and the subword w1 is geodesic.

Lemma 3.2. If w is a word in NP;NPX or XNP, and ~ww contains a subword of the form

t�1a2it with i A Z, then w is not geodesic.
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Proof. The word w can be written as w ¼ w0w1w2 with w1 A NP and each of w0 and
w2 in either X or E. Since ~ww ¼ ~ww0w1 ~ww2 contains the subword t�1a2it A NP, the word
t�1a2it must be a subword of w1, and hence also of w. Since t�1a2it ¼G ai, this sub-
word is not geodesic, and hence w also is not geodesic.

Lemma 3.3. If w is any word in NP or NPN and w ¼G 1, then w must contain a sub-

word of the form t�1a2it for some i A Z.

Proof. Since G ¼ BSð1; 2Þ is an HNN extension, Britton’s Lemma yields that if
w A NPðNÞ and w ¼G 1, then w must contain a subword of the form tait�1 or t�1a2it

for some i A Z. If w A NP then w must contain the second type of subword.
If w A NPN, then w ¼ w1w2w3 with w1;w3 A N and w2 A P. Since stðw1Þ < 0

and 0 ¼ stð1Þ ¼ stðw1Þ þ stðw2Þ þ stðw3Þ, we have stðw2Þ > stðw3Þ and w2w3 A PX .
Then w2w3 ¼ w4w5 with w4 A P and w5 A X , and we have w1w4 ~ww5 A NP with
w1w4 ~ww5 ¼G w ¼G 1. Now Britton’s Lemma applies again to show that the prefix
w1w4 of w must contain a subword of the form t�1a2it for i A Z.

Lemma 3.4. If w and u are geodesics, w A NPUXNPUNPX , stðwÞc stðuÞ, and

1c dðw; uÞc 2, then u A NPUXNPUNPX , and for some w1; u1 A N and w2; u2 A P

with stðw1Þ ¼ stðu1Þ, ~ww ¼ w1w2 and ~uu ¼ u1u2.

Proof. The definition of ~ww shows that we can write ~ww ¼ w1w2 with w1 A N and
w2 A P. Let g label a path of length 1 or 2 from w to u; since stðwÞc stðuÞ,
then g A E UP. Proposition 2.3 says that ~uu A E UPUN UNP. Since w is a geodesic,
Lemma 3.2 implies that ~ww cannot contain a subword of the form t�1a2it for any in-
teger i. Then Lemma 3.3 says that the word ~wwg~uu�1, which represents the trivial ele-
ment 1 in G, cannot be in NPðNÞ. Therefore ~uu B E UPUN, and so ~uu A NP. Hence
u A NPUXNPUNPX .

We can now write ~uu ¼ u1u2 with u1 A N and u2 A P. The word
~uu�1 ~wwg ¼ u�1

2 u�1
1 w1w2g is another representative of 1. Repeatedly reducing subwords

ta jt�1 to a2j in the subword v :¼ u�1
1 w1 A PN results in a word ~vv A E UPUN. Then

1 ¼G u�1
2 ~vvw2g A NPðNÞ, and so this word must contain a subword of the form t�1a2it

for some integer i. Since w and u are geodesics, w1w2 and u�1
2 u�1

1 cannot contain such
a subword. Therefore we must have ~vv A E. Hence stðw1Þ ¼ stðu1Þ.

We split the proof of Theorem 3.5 into ten cases, depending on the classes from
Proposition 2.3 to which the two geodesics w and u belong. In overview, we begin by
showing that the first three cases cannot occur; that is, for a pair of geodesics w and u

of length r in the respective classes in these three cases, it is not possible for dðw; uÞ to
be less than 3. In Cases 4–6, we show that a path d can be found that travels from w

along the path w�1 to within a distance 2 of the identity vertex, and, after possibly
traversing an intermediate edge, d then travels along a su‰x of u to u. In Case 7 we
show that the path d can be chosen to have length at most 6, traveling around at most
two bricks in the Cayley complex. In Case 8 there are subcases in which each of the
two descriptions above occur, as well as a subcase in which the path d initially follows
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the inverse of a su‰x of w from w, then travels along a path that ‘fellow-travels’ this
initial subpath, and then repeats this procedure by traversing a fellow-traveler of a
su‰x of u, and then traveling along the su‰x itself to u. In Cases 9 and 10, the paths
d constructed in each of the subcases follow one of these three patterns.

Theorem 3.5. The group G ¼ BSð1; 2Þ ¼ ha; t j tat�1 ¼ a2i is M 0AC with respect to

the generating set A ¼ fa; a�1; t; t�1g. In particular, if w and u are geodesics of length

r > 200 with 1c dðw; uÞc 2, then there is a path d inside BðrÞ from w to u of length at

most 2r� 2.

Proof. Suppose that w and u are geodesics of length r > 200 with 1c dðw; uÞc 2.
Using Proposition 2.3, by replacing w and u by ŵw and ûu respectively, we may assume
that each of w and u is in one of the normal forms listed in that proposition. Using
Lemma 3.1, we may assume that neither w nor u is in E.

Let g be the word labeling a geodesic path of length at most 2 from w to u, so that
wgu�1 ¼G 1. Since dðw; uÞd 1,

g A faG1; tG1; aG2; atG1; a�1tG1; taG1; t�1aG1; tG2g:

Then g is in one of the sets E;P or N.
We divide the argument into ten cases, depending on the class of the normal forms

w and u from Proposition 2.3, which we summarize in the following table.

Case Class of w Class of u Case Class of w Class of u

Case 1 (4) (1) Case 6 (3) (3)

Case 2 (4) (3) Case 7 (2) (2)

Case 3 (2) (3) Case 8 (1) (3)

Case 4 (1) (1) Case 9 (2) (4)

Case 5 (1) (2) Case 10 (4) (4)

This table represents a complete list of the cases to be checked. In particular, if w is
in class (2) and u in class (1), then the inverse of the path in Case 5 will provide the
necessary path d, and similarly for the remainder of the cases.

Case 1: w is in class (4) and u is in class (1). Then w is in either NP;NPX or XNP,
and u A X . Since ~ww A NP, ~uu A E, and the path g is in either E; N or P, then
1 ¼G wgu�1 ¼G ~wwg~uu�1 A NPðNÞ (that is, replacing the X subwords of w and u by
powers of a). By Lemma 3.3, ~wwg~uu�1 contains a subword of the form t�1a2st A NP,
which therefore must occur within ~ww. Then Lemma 3.2 says that w is not a geodesic,
which is a contradiction. Hence Case 1 cannot arise.
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Case 2: w is in class (4) and u is in class (3). Then w is in either NP;XNP or NPX ,
and u A PðXÞ. In this case 1 ¼G ~wwg~uu�1 A NPN , and the same proof as in Case 1
shows that Case 2 cannot occur.

Case 3: w is in class (2) and u is in class (3). Then w A ðXÞN and u A PðXÞ. Since
stðwÞ < 0 and stðuÞ > 0, we must have stðwÞ ¼ �1, stðuÞ ¼ 1, and g ¼ t2. Lemma
3.1 says that w A XN, and u A PX . Since w is in normal form, w ¼ ŵw ¼ w0t

�1ai with
jijc 1 and w0 A X , and similarly u ¼ a jtu0 with j jjc 1 and u0 A X . Then

1 ¼G ~wwg~uu�1 ¼G ~ww0t
�1ait2~uu�1

0 t�1a�j A NPN:

Lemma 3.3 then says that w0t
�1ait2~uu�1

0 t�1a�j contains a subword of the form t�1a2st

for some s A Z, so i must be a multiple of 2, and hence i ¼ 0. Using the last part of
Proposition 2.3, we can further write the normal form for w0 A X as w0 ¼ w1t

�1, and
so w ¼ wit

�2. Then u ¼G wg ¼G wðr� 2Þ, contradicting the hypothesis that u is
a geodesic word of length r. Thus Case 3 does not arise.

Case 4: Both w and u are in class (1). Then w and u are both in X . From Propo-
sition 2.3 the normal forms w ¼ ŵw and u ¼ ûu can be chosen of the form ŵw ¼ thw1

and ûu ¼ tiu1 with h; i > 0 and w1; u1 A N. Then w and u have a common prefix
t ¼ wð1Þ ¼ uð1Þ, and the path d :¼ w�1

1 t�ðh�1Þti�1u1 from w through wð1Þ to u has
length 2r� 2 and stays inside BðrÞ.

Case 5: w is in class (1) and u is in class (2). Then w A X and u A ðX ÞN. In this case
stðwÞ ¼ 0, stðgÞ ¼ stðw�1uÞ ¼ stðwÞ þ stðuÞ ¼ stðuÞ, and stðuÞ < 0, so that stðuÞ is
either �1 or �2. The hypothesis that r > 200 and Lemma 3.1 imply that u A XN.
Then both of the normal forms ŵw and ûu can be chosen to begin with t, and the same
proof as in Case 4 gives the path d.

Case 6: Both w and u are in class (3). In this case both w and u are in PðXÞ. Without
loss of generality assume that stðwÞc stðuÞ, and hence stðgÞd 0 and g A E UP. Since
both w and u are in normal form, w ¼ aitw1w0 and u ¼ a jtu1u0 with w1; u1 A PUE;
w0; u0 A X UE; and jij; j jjc 1. Then

1 ¼G u�1wg ¼G ~uu�1
0 u�1

1 t�1ai�j tw1 ~ww0g A NP:

By Lemma 3.3, u�1
0 u�1

1 t�1ai�j tw1 ~ww0g has a subword of the form t�1a2st, so i � j is a
multiple of 2 and hence either i ¼ j with 0c jijc 1 or i ¼ �j with jij ¼ 1.

If i ¼ j then w and u have a common prefix ait ¼ wð1 þ jijÞ ¼ uð1 þ jijÞ. The

path d :¼ w�1
0 w�1

1 u1u0 from w follows the su‰x w1w0 of w backward to wð1 þ jijÞ and
then follows the su‰x u1u0 of u to u, remaining in BðrÞ.

If i ¼ �j with jij ¼ 1, define the path

d :¼ w�1
0 w�1

1 a�iu1u0 ¼G w�1
0 w�1

1 t�1a�ia�itu1u0 ¼ w�1u ¼G g:
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Then d labels a path of length 2r� 3, traveling along w�1 from w to
wdðr� 2Þ ¼ wð2Þ, then along a single edge to wdðr� 1Þ ¼ uð2Þ, and finally along a
su‰x of u to u, thus remaining in BðrÞ. (See Figure 2.)

Case 7: Both w and u are in class (2). In this case, both w and u are in ðX ÞN. We
can assume without loss of generality that stðwÞc stðuÞ, and so again stðgÞd 0 and
g A E UP.

From Proposition 2.3 we have w ¼ w0w1t
�1ai and u ¼ u0u1t

�1a j with
w0; u0 A X UE; w1; u1 A N UE; and jij; j jjc 1. Thus

1 ¼G ~wwg~uu�1 ¼ ~ww0w1t
�1aiga�j tu�1

1 ~uu�1
0 A NP:

By Lemma 3.3 the latter contains a subword of the form t�1a2st, and so t�1aiga�j t

must contain this subword.
Since g A E UP, we have g A ft; t2; taG1; aG1t; aG1; aG2g, and we may divide the

argument into four subcases.

Case 7.1: g A ft; aG1tg. Then t�1a2st must be a subword of t�1aig. If g ¼ t, then since
jijc 1 we have i ¼ 0 and w ¼ w0w1t

�1, hence

u ¼G wg ¼G wðr� 1Þ:

If g ¼ aG1t, then jij ¼ 1, and g ¼ aGit. If g ¼ ait, then

u ¼G wg ¼ wðr� 2Þt�1aiait ¼G wðr� 2Þai:

Finally, if g ¼ a�it, then

u ¼G wg ¼ wðr� 2Þt�1aia�it ¼G wðr� 2Þ:

Figure 2. Case 6. w ¼ aitw1w0, u ¼ a�itu1u0
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Each of these three options results in a contradiction to the fact that u is a geodesic of
length r, and so Subcase 7.1 cannot occur.

Case 7.2: g A ft2; taG1g. In this subcase, t�1a2st must be a subword of t�1ait again,
and so i ¼ 0 and w ¼ w0w1t

�1. Note that gð1Þ ¼ t and wgð1Þ ¼G wðr� 1Þ. Then g is
a path of length 2 inside BðrÞ from w to u. In this subcase, we may define the path
d :¼ g.

Case 7.3: g A faG1g. Write g ¼ ak with jkj ¼ 1. Recall that 0c jijc 1.
If i ¼ 0, then t�1a2st must be a subword of t�1aka�j t, hence 2 j ðk � jÞ and j jj ¼ 1.

Then g ¼ aG j. If g ¼ a j , then

w ¼G ug�1 ¼ uðr� 2Þt�1a ja�j ¼G uðr� 2Þt�1;

contradicting the length r of the geodesic w. Thus g ¼ a�j. The word
d :¼ ta�j t�1a j ¼G a�j labels a path from w to u of length 4. Since wdð1Þ ¼G wðr� 1Þ
and wdð2Þ ¼G uðr� 2Þ, the path d stays inside BðrÞ, and hence satisfies the required
properties. (See Figure 3.)

If jij ¼ 1, then we can write g ¼ aGi. If g ¼ a�i, then u ¼G wg ¼G wðr� 1Þ, again
giving a contradiction; hence g ¼ ai. Note that the word t�1a2st must be a subword
of t�1a2ia�j t, hence 2 j ð2i � jÞ and j ¼ 0. Write d :¼ a�itait�1 ¼G ai; then d labels a
path of length 4 from w to u, with wdð2Þ ¼G wðr� 2Þ and wdð3Þ ¼G uðr� 1Þ, and so
the path remains in BðrÞ as required.

Case 7.4: g A faG2g. Write g ¼ a2k with jkj ¼ 1. As in the previous subcase, we con-
sider the options i ¼ 0 and jij ¼ 1 in separate paragraphs.

If i ¼ 0, then t�1a2st must be a subword of t�1a2ka�j t, and so j ¼ 0. Then the path
of length 3 labeled by d :¼ takt�1 from w to u traverses the vertices represented by
wdð1Þ ¼G wðr� 1Þ and wdð2Þ ¼G uðr� 1Þ, hence remaining in BðrÞ.

Figure 3. Case 7.3. w ¼ w0w1t
�1, u ¼ u0u1t

�1a j
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If jij ¼ 1, then g ¼ aG2i. If g ¼ a�2i, then wgð1Þ ¼G wðr� 1Þ, and so we may define
d :¼ g.

If jij ¼ 1 and g ¼ a2i, then t�1a2st must be a subword of t�1a3ia�j t. Thus
j jj ¼ 1, and so j ¼Gi. If j ¼ i, then wgð1Þ ¼G uðr� 1Þ, hence again the path
d :¼ g has the required properties. If j ¼ �i, then the path of length 6 labeled
by d :¼ a�ita2it�1a�i ¼G a2i starting at w ends at u. Since wdð2Þ ¼G wðr� 2Þ and
wdð4Þ ¼G uðr� 2Þ, this path also remains within BðrÞ.

Case 8: w is in class (1) and u is in class (3). Then w A X and u A PðXÞ. In this case
stðwÞ ¼ 0, stðuÞ > 0, and stðuÞ ¼ stðwÞ þ stðgÞ ¼ stðgÞ, so that 0 < stðuÞ ¼ stðgÞc 2.
Thus g A P, and so g A ft; taG1; t2; aG1tg.

Suppose that g A ft; taG1; t2g. By Proposition 2.3 and Lemma 3.1, the normal
form w can be chosen in the form w ¼ w1t

�h with w1 A P and h > 10. Then the geo-
desic u of length r cannot represent wt ¼G wðr� 1Þ or wt2 ¼G wðr� 2Þ, thus g0 t

and g0 t2. For g ¼ taG1, since wgð1Þ ¼G wðr� 1Þ, we may define d :¼ g.
Suppose for the rest of Case 8 that g ¼ aG1t and write g ¼ amt with jmj ¼ 1. Prop-

osition 2.3 says that the normal form w can also be chosen in the form w ¼ tw0t
�1ai

with w0 A X and 0c jijc 1. If i ¼ m, then

u ¼G wg ¼ tw0t
�1amamt ¼G wðr� 2Þam;

and if i ¼ �m, then

u ¼G tw0t
�1a�mamt ¼ wðr� 2Þ;

both contradicting the geodesic length r of u. Then i ¼ 0 and w ¼ tw0t
�1 with w0 in

X . We also have stðuÞ ¼ stðgÞ ¼ 1, and Lemma 3.1 implies that u A PX , and so we
have the normal form u ¼ a jtu0 with u0 in X and j jjc 1.

If j ¼ 0 then w and u have a common t prefix, and the path d :¼ tw�1
0 u0 has the

required properties.
Suppose for the remainder of Case 8 that j jj ¼ 1. Then either g ¼ a jt or g ¼ a�j t;

we consider these two subcases separately.

Case 8.1: g ¼ a jt. Applying Lemma 2.1 to commute the subwords in parentheses
with zero t-exponent-sum, we have

1 ¼G wgu�1 ¼ tw0t
�1ða jÞðtu�1

0 t�1Þa�j ¼G tw0u
�1
0 t�1;

which yields that w0 ¼G u0. By Proposition 2.3 we can replace each subword
with a normal form w0 ¼ u0 ¼ vtakt�p such that 2c jkjc 3 and v A P with
stðvÞ ¼ p� 1. Since r > 200, Lemma 3.1 implies that p > 10. Let s :¼ signðkÞ. Then
w ¼ tvtajkjst�ðpþ1Þ and u ¼ a jtvtajkjst�p.

Consider the path d :¼ t pa�2st�pa jt pa2st1�p starting at w. Using Lemma 2.1 we
have

d ¼ ðt pa�2st�pÞða jÞt pa2st�ðp�1Þ ¼G ða jÞðt pa�2st�pÞt pa2st�ðp�1Þ ¼G a jt ¼ g;
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and so d labels a path from w to u. This path d both follows and ‘fellow travels’ suf-
fixes of w and u; see Figure 4 for a view of this path, shown in shading, when k and j

have the same sign.

In order to check that d remains in the ball BðrÞ, we analyze the distances from 1
of several vertices along the path d, together with the lengths of the subpaths between
the vertices. The prefix t p of d is the inverse of a su‰x of w, and so starting from w

the path d follows the path w backward. Then dð1; wdðiÞÞ ¼ r� i for 0c ic p and
wdðpÞ ¼G wðr� pÞ. The point wdðpþ 1Þ must then also lie in the ball Bðr� ðp� 1ÞÞ.
Since

wdðpþ 2Þ ¼ wt pa�2s ¼G wðr� pÞa�2s

¼G wðr� pÞta�st�1 ¼G wðr� ðpþ 2ÞÞt�1;

the point C :¼ wdðpþ 2Þ must lie in the ball Bðr� ðpþ 1ÞÞ. Then the initial segment
of d of length pþ 2 from w to C lies inside BðrÞ.

Similarly, the su‰x t�ðp�1Þ of d is also a su‰x of u, hence

dð1; wdð3pþ 5 þ iÞÞ ¼ r� ðp� 1Þ þ i

for 0c ic p� 1 and wdð3pþ 5Þ ¼G uðr� ðp� 1ÞÞ. We have

wdð3pþ 4Þ A Bðr� ðp� 2ÞÞ:

Since

wdð3pþ 3Þ ¼G wdð3pþ 5Þa�2s ¼G uðr� ðp� 1ÞÞta�st�1

¼G a jtvtajkjst�1ta�st�1 ¼G uðr� ðpþ 1ÞÞt�1;

Figure 4. Case 8.1. w ¼ tvtakt�p�1, u ¼ a jtvtakt�p, g ¼ a jt
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the point D :¼ wdð3pþ 3Þ must lie in the ball Bðr� pÞ. So the final segment of d of
length pþ 1 from D to u also lies in BðrÞ.

Finally, the central section labeled t�pa jt p of the path d from C A Bðr� ðpþ 1ÞÞ to
D A Bðr� pÞ has length 2pþ 1, and hence never leaves the ball BðrÞ. The entire path
d has length 4pþ 4, whereas

r ¼ lðvÞ þ jkj þ pþ 3d ðp� 1Þ þ 2 þ pþ 3 ¼ 2pþ 4;

and so lðdÞc 2r� 4. Thus the path d has the required properties in this subcase.

Case 8.2: g ¼ a�j t. Applying Lemma 2.1 again yields that

1 ¼G wgu�1 ¼ tw0t
�1ða�jÞðtu�1

0 t�1Þa�j

¼G tw0t
�1tu�1

0 t�1a�ja�j ¼G tw0u
�1
0 a�j t�1;

implying that u0 ¼G a�jw0. Substituting this into the expression for u gives

u ¼ a jtu0 ¼G a jta�jw0 ¼G a�j tw0:

Note that r ¼ lðwÞ ¼ lðw0Þ þ 2, and so a�j tw0 is another geodesic from 1 to u.
Replacing u with a�j tw0, we can now find the path d using Subcase 8.1.

Case 9: w is in class (2) and u is in class (4). Then w A ðX ÞN and u is in either
NP;XNP or NPX . Since w B ðX ÞNPUNPX , Lemma 3.4 says that stðwÞ < stðuÞ.
Therefore stðgÞ > 0, and so g A ft; t2; aG1t; taG1g. We divide this case into two sub-
cases, depending on the t-exponent sum of u.

Case 9.1: stðuÞc 0. By Proposition 2.3, we have the geodesic normal form
u ¼ u0u1t

�1amet f with u0 A X UE, u1 A N, jmej ¼ 1, and 1c f c e ¼ jstðu1Þj þ 1.

Case 9.1.1: g A ft; t2; aG1tg. Then g and u share a su‰x t, hence uðr� 1Þ ¼ ug�1ð1Þ.
The geodesic w is not equal to uðr� 1Þ, and so g0 t. For g A ft2; aG1tg, the path
d :¼ g has the required properties.

Case 9.1.2: g A ftaG1g. Write g ¼ tak with jkj ¼ 1. Also write w ¼ w0w1 with
w0 A X UE and w1 A N. Then

1 ¼G ~uug�1 ~ww�1 ¼ ~uu0u1t
�1amet f a�kt�1w�1

1 ~ww�1
0

¼G ~uu0u1t
�1amet f�1a�2kw�1

1 ~ww�1
0 A NP:

Lemma 3.3 implies that the latter word must contain a non-geodesic t�1a2st

subword. Then the first occurrence of a t must be in w�1
1 , and so f ¼ 1. Write

u ¼ u0u1t
�1amet ¼ u0u

0
1t with u 0

1 :¼ u1t
�1ame A N. Note that
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w ¼G ug�1 ¼G u0u
0
1ta

�kt�1 ¼G uðr� 1Þa�2k:

Let

v :¼ u0u
0
1a

�k ¼ uðr� 1Þa�k ¼G wak:

The vertex v satisfies v A BðrÞ. If v A Bðr� 1Þ, then the path d :¼ a2kt from w to u

satisfies wdð1Þ ¼G v and wdð2Þ ¼G uðr� 1Þ, and so d is a path of length 3 inside BðrÞ
from w to u. On the other hand, if v B Bðr� 1Þ, then v is a length r geodesic in ðXÞN
and w ¼G va�k, and so dðv; uÞ ¼ 1. Applying Case 7.3 to the geodesics v and w in
class (2), we obtain a path d 0 of length 4 inside BðrÞ from w to v. Let d :¼ d 0akt. Then
d is a path of length 6 from w to u inside BðrÞ.

Case 9.2: stðuÞ > 0. Since stðwÞ < 0 and stðwÞ þ stðgÞ ¼ stðuÞ we must have
stðwÞ ¼ �1, stðuÞ ¼ 1, and g ¼ t2. By Proposition 2.3 and Lemma 3.1 we also
have w ¼ w0t

�1ai with w0 A X , jijc 1, w0 ¼ vtakt�p�1 with v A P, stðvÞ ¼ p > 9,
and 2c jkjc 3. Since u ¼G wg ¼ vtakt�pt�2ait2 and u has geodesic length
r ¼ lðwÞ ¼ lðvÞ þ jkj þ jij þ pþ 3, then i0 0. Using Lemma 2.1 we see that
u ¼G ðt�1aitÞðvtakt�p�1Þt. The word x :¼ t�1aitvtakt�p is another geodesic labeling
a path from the identity to u.

Let s :¼ signðkÞ, and define the path

d :¼ a�it pþ1a�2st�ðp�1Þt�2ait2t p�1a2st�ðp�1Þ

starting at w. Using Lemma 2.1 we have

d ¼G a�it pþ1a�2st�ðp�1Þðt p�1a2st�ðp�1ÞÞðt�2ait2Þ ¼G t2 ¼ g;

and so d labels a path from w to u ¼ x. We also have lðdÞ ¼ 4pþ 8, and

r ¼ lðwÞ ¼ lðvÞ þ jkj þ pþ 4d 2pþ 6;

hence lðdÞc 2r� 4.
The proof that d remains in BðrÞ is similar to Case 8.1. In particular, note that

wdðpþ 2Þ ¼ wðr� ðpþ 2ÞÞ A Bðr� ðpþ 2ÞÞ:

Since

wdðpþ 4Þ ¼ ðvtakt�pt�2aiÞða�it pþ1a�2sÞ ¼G vtak�st�1 ¼G wðr� ðpþ 4ÞÞt�1;

then wdðpþ 4Þ A Bðr� ðpþ 3ÞÞ. Also

wdð3pþ 9Þ ¼ xðr� ðp� 1ÞÞ A Bðr� ðp� 1ÞÞ:
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Finally, since

wdð3pþ 7Þ ¼G xðr� ðp� 1ÞÞa�2s ¼G t�1aitvtakt�1a�2s

¼G t�1aitvtak�st�1 ¼G xðr� ðpþ 1ÞÞt�1;

we have wdð3pþ 7Þ A Bðr� pÞ. Then the five successive intermediate subpaths of d

between w, these four points, and u are too short to allow d to leave BðrÞ.

Case 10: Both w and u are in class (4). In this case both w and u are in ðXÞNPUNPX .
We may assume without loss of generality that stðwÞc stðuÞ. It follows that
stðgÞd 0, so that g A faG1; aG2; aG1t; taG1; t; t2g.

We divide this case into three subcases, depending on the t-exponents of w and u.

Case 10.1: stðwÞd 0 and stðuÞd 0. In this case Proposition 2.3 says that we
have geodesic normal forms u;w A NPðXÞ, and moreover w ¼ t�p1w 0 and u ¼ t�p2u 0

with p1 > 0, p2 > 0, and w 0; u 0 A PðX Þ. Thus wð1Þ ¼ t�1 ¼ uð1Þ, and we may define
d :¼ w 0�1t p1�1t�ðp2�1Þu 0.

Case 10.2: stðwÞ < 0 and stðuÞc 0. In this subcase, we have normal forms
w; u A ðX ÞNP, and we can write

w ¼ w0w1t
�1ai1 t f1 and u ¼ u0u1t

�1ai2 t f2

with w0; u0 A X UE, w1 A N, u1 A N UE, f1 d 1, f2 d 1, stðw1Þc�f1,
stðu1Þc�ð f2 � 1Þ, and ji1j ¼ ji2j ¼ 1. Lemma 3.4 implies that stðw1Þ ¼ stðu1Þ. Then

stðwgÞ ¼ stðw1Þ � 1 þ f1 þ stðgÞ ¼ stðuÞ ¼ stðu1Þ � 1 þ f2;

and so f2 ¼ f1 þ stðgÞd f1.

Case 10.2.1: g A ft; t2; aG1tg. Since the last letter of u is t, the proof of Case 9.1.1
shows that g0 t, and for g A ft2; aG1tg, we may define d :¼ g.

Case 10.2.2: g A faG1g. Write g ¼ ak with jkj ¼ 1. The word d :¼ t�1a2kt labels a
path of length 4 from w to u. Since both words w and u end with t, we have
wdð1Þ ¼G wðr1Þ and wdð3Þ ¼G uðr� 1Þ, and hence d lies in BðrÞ.

Case 10.2.3: g A ftaG1g. Write g ¼ tak with jkj ¼ 1. In this subcase,

f2 ¼ f1 þ stðgÞ ¼ f1 þ 1d 2:

Then the word w ends with t and u ends with t2. Now

u ¼ uðr� 1Þt ¼G wg ¼ wtak ¼G wa2kt:
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Let v :¼ uðr� 1Þa�k ¼G wak. Then v A ðXÞNP and v A BðrÞ. The remainder of the
proof in this subcase is similar to Case 9.1.2. If v A Bðr� 1Þ, then d :¼ a2kt has the
required properties. If v B Bðr� 1Þ, then Case 10.2.2 provides a path d 0 ¼ t�1a2kt

inside BðrÞ from w to v, and the path d :¼ d 0akt ¼ t�1a2ktakt from w to u satisfies the
required conditions.

Case 10.2.4: g A faG2g. Write g ¼ a2k with jkj ¼ 1. In this case we have
stðuÞ ¼ stðwÞ < 0 and f2 ¼ f1 þ stðgÞ ¼ f1.

Note that the radius r satisfies

r ¼ lðwÞ ¼ lðw0Þ þ lðw1Þ þ 2 þ f1 d stðw1Þ þ 2 þ f1 d 2f1 þ 2:

If r ¼ 2f1 þ 2, then w ¼ t�f1�1ai1 t f1 and u ¼ t�f1�1ai2 t f1 . Since w0 u we have i1 0 i2,
and so i2 ¼ �i1. Since r > 200, then f1 > 1. Now

u�1wg ¼G ðt�f1�1ai2 t f1Þ�1ðt�f1�1ai1 t f1Þa2k ¼G ðt�ð f1�1Þai1 t f1�1Þa2k;

according to Britton’s Lemma, this last expression cannot equal the trivial element 1
in G. Thus r0 2f1 þ 2, and so rd 2f1 þ 3.

Define d :¼ t�f1ða�i1Þðt f1a2kt�f1Þai1 t f1 . Using Lemma 2.1 to commute the subwords
in parentheses, and freely reducing the resulting word, shows that d ¼G a2k ¼ g, and
so d labels a path from w to u. We have

lðgÞ ¼ 4f1 þ 4 ¼ 2ð2f1 þ 3Þ � 2c 2r� 2:

The prefix dð f1 þ 2Þ ¼ w�1ð f1 þ 2Þ is the inverse of a su‰x of w, hence

wdð f1 þ 2Þ ¼ wðr� ð f1 þ 2ÞÞ A Bðr� ð f1 þ 2ÞÞ:

The word t fi is a su‰x of both d and u, and so wdð3f1 þ 4Þ ¼ uðr� f1Þ A Bðr� f1Þ.
The three subpaths of d between w, the two points above, and u are again too short to
allow d to leave BðrÞ.

Case 10.3: stðwÞ < 0 and stðuÞ > 0. Then g ¼ t2, stðwÞ ¼ �1, and stðuÞ ¼ 1. From
Proposition 2.3, we have the normal form w ¼ w0t

�1am1 t�1 . . . t�1ampt p�1 with either
w0 A X or w0 ¼ ak A E for some jkjc 3, pd 2, and jmpj ¼ 1. By Lemma 2.1, the
word �ww :¼ w0t

�pamptamp�1 . . . tam1 is another geodesic representative of w. The nor-
mal form for u A NPðX Þ has the form u ¼ t�ea jtu1u0 with ed 1, j jj ¼ 1, u1 A P with
stðu1Þ ¼ e, and u0 A X UE. Lemma 3.4 shows that p ¼ e. Replacing w by the alter-
nate normal form �ww, we can write

w ¼ w0t
�paitw2 and u ¼ t�pa jtu1u0

such that either w0 A X or w0 ¼ ak for jkjc 3, pd 2, jij ¼ 1, w2 A PUE with
stðw2Þ ¼ p� 2, j jj ¼ 1, u1 A P with stðu1Þ ¼ p, and u0 A X UE.
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We will divide Case 10.3 into further subcases, depending on the form of w0 and
the length of w2.

Case 10.3.1: w0 A X . In this case Proposition 2.3 says that we can write w0 ¼ w3ta
kt�l

with ld 1, w3 A PUE, stðw3Þ ¼ l � 1, and 2c jmjc 3. Let s ¼G1 be the sign of m,
so that m ¼ jmjs. Then

w ¼ w3ta
jmjst�l t�paitw2:

The radius satisfies

r ¼ lðw3Þ þ lðw2Þ þ jmj þ l þ pþ 3dstðw3Þ þ lðw2Þ þ l þ pþ 5 ¼ lðw2Þ þ 2l þ pþ 4:

Applying Lemma 2.1, we obtain that

u ¼G �wwt2 ¼ ðw3ta
jmjst�lÞðt�paitw2tÞt ¼G t�paitw2tw3ta

jmjst�ðl�1Þ:

Then

�uu :¼ t�paitw2tw3ta
jmjst�ðl�1Þ

is another geodesic representative of u.

Case 10.3.1.1: ld 2. Define

d :¼ ðw�1
2 t�1a�it p�1Þðtla�2mt�lÞt�ðp�1Þaitw2t

la2mt�ðl�2Þ:

Applying Lemma 2.1 to the subwords in parentheses shows that d ¼G t2 ¼ g, and so d

labels a path from w to �uu ¼ u. The length of d satisfies

lðdÞ ¼ 2lðw2Þ þ 4l þ 2pþ 4c 2r� 4:

We consider 4 vertices along the path d. Note that

wdðlðw2Þ þ pþ l þ 1Þ ¼ wðr� ðlðw2Þ þ pþ l þ 1ÞÞ A Bðr� ðlðw2Þ þ pþ l þ 1ÞÞ:

Moreover

wdðlðw2Þ þ pþ l þ 3Þ ¼G w3ta
jmjst�1a�2s

¼G w3ta
ðjmj�1Þst�1wðr� ðlðw2Þ þ pþ l þ 3ÞÞt�1;

implying that wdðlðw2Þ þ pþ l þ 3ÞÞ A Bðr� ðlðw2Þ þ pþ l þ 2ÞÞ. The su‰x t�ðl�2Þ

of d is also a su‰x of �uu, and so
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wdð2lðw2Þ þ 3l þ 2pþ 6Þ ¼ �uuðr� ðl � 2ÞÞ A Bðr� ðl � 2ÞÞ:

Finally,

wdð2lðw2Þ þ 3l þ 2pþ 4Þ ¼G �uuðr� ðl � 2ÞÞa�2s ¼G t�paitw2tw3ta
jmjst�1a�2s

¼G t�paitw2tw3ta
ðjmj�1Þst�1;

and so

wdð2lðw2Þ þ 3l þ 2pþ 4Þ ¼ �uuðr� lÞt�1 A Bðr� ðl � 1ÞÞ:

The five subpaths of d between w, these four points, and u are each too short to leave
BðrÞ.

Case 10.3.1.2: l ¼ 1. In this case define

d :¼ ðw�1
2 t�1a�it p�1Þðta�2st�1Þt�ðp�1Þaitw2t

2as:

Commuting the subwords in parentheses, we see that d ¼G t2 ¼ g and d labels a path
from w to u. The length satisfies

lðdÞ ¼ 2lðw2Þ þ 2pþ 9 ¼ 2lðw2Þ þ 4l þ 2pþ 5c 2r� 3:

The proof that d remains in BðrÞ is similar to Case 10.3.1.1. In particular,

wdðlðw2Þ þ pþ 2Þ ¼ wðr� ðlðw2Þ þ pþ 2ÞÞ A Bðr� ðr� ðlðw2Þ þ pþ 2ÞÞ;

wdðlðw2Þ þ pþ 4Þ ¼ wðr� ðlðw2Þ þ pþ 4ÞÞt�1 A Bðr� ðr� ðlðw2Þ þ pþ 3ÞÞ;

wdð2lðw2Þ þ 2pþ 8Þ ¼ �uuðr� 1Þ A Bðr� 1Þ;

and the four successive subpaths between w, these three points, and u are too short
for d to leave BðrÞ.

Case 10.3.2: w0 ¼ ak with jkjc 3, and lðw2Þ ¼ p� 2. Since stðw2Þ ¼ p� 2, then
w2 ¼ t p�2 and w ¼ akt�pait p�1 with pd 2 and jij ¼ 1. Recall that u ¼ t�pa jtu1u0

with j jj ¼ 1 and stðu1Þ ¼ p. The radius satisfies r ¼ jkj þ 2p ¼ pþ 2 þ lðu1u0Þ, and
so jkj ¼ lðu1u0Þ � pþ 2d 2.

If jkj ¼ 2, then lðu1u0Þ ¼ p and

u ¼ t�pa jt pþ1:

We have 1 ¼G wt2u�1 ¼ akt�pait p�1t2t�ðpþ1Þa�j t p ¼G akt�paia�j t p. Since ak 0G 1,
then i0 j. But akt�paiait p ¼G akt�ðp�1Þaitðp�1Þ, and Britton’s Lemma says that
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the latter word cannot represent the trivial element 1, and so i0�j. Therefore we
cannot have jkj ¼ 2.

If jkj ¼ 3, then lðu1u0Þ ¼ pþ 1 and stðu1Þ ¼ p, and so the word u1u0 contains one
occurrence of a or a�1. Write u1u0 ¼ tbalt p�b for some 0c bc p and jlj ¼ 1. Then
wt2u�1 freely reduces to akt�paitðtba�l t�bÞða�jÞt p. Commuting the subwords in
parentheses and reducing again gives

1 ¼G wt2u�1 ¼G akt�paita�j tba�l t p�b:

This word is in NP, and does not contain a subword of the form t�1a2mt, and so
Britton’s Lemma (or Lemma 3.3) implies a contradiction again. Therefore Case
10.3.2 cannot occur.

Case 10.3.3: w0 ¼ ak with jkjc 3 and lðw2Þd p� 1. In this case we have the geodesic
normal forms w ¼ akt�paitw2 and u ¼ t�pa jtu1u0. The radius satisfies

r ¼ lðw2Þ þ jkj þ pþ 2 ¼ lðu1u0Þ þ pþ 2:

We consider two subcases, depending on whether i ¼ j or i0 j.

Case 10.3.3.1: i ¼ j. In this subcase note that

g ¼ t2 ¼G w�1u ¼ w�1
2 t�1ða�jÞðt pa�kt�pÞa jtu1u0:

Applying Lemma 2.1 and reducing shows that

d :¼ w�1
2 t p�1a�kt�ðp�1Þu1u0 ¼G g;

and so d labels a path from w to u. The length of d satisfies lðdÞ ¼ 2r� 6.
As usual we analyze the distances from 1 of several vertices along the path d. We

have

wdðlðw2ÞÞ ¼ wðr� lðw2ÞÞ A Bðr� lðw2ÞÞ;

wdðlðw2Þ þ 2p� 2 þ jkjÞ ¼ uðr� lðu1u0ÞÞ A Bðr� lðu1u0ÞÞ;

and the three intervening subpaths are each too short to allow d to leave BðrÞ.

Case 10.3.3.2: i ¼ �j. As in Case 10.3.3.1, after commuting and reduc-
tion we have g ¼G w�1u ¼G w�1

2 t p�1a�kt�pa ja jtu1u0. Then the word
d :¼ w�1

2 t p�1w�1
0 t�ðp�1Þa ju1u0 ¼G g labels a path from w to u and has length

lðdÞ ¼ 2r� 5.
Also as in Case 10.3.3.1, we have

wdðlðw2ÞÞ ¼ wðr� lðw2ÞÞ A Bðr� lðw2ÞÞ

and
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wdðlðw2Þ þ 2p� 1 þ jkjÞ ¼ uðr� lðu1u0ÞÞ A Bðr� lðu1u0ÞÞ:

Now

wdðlðw2Þ þ 2p� 2 þ jkjÞ ¼G ðt�pa jtÞa�j ¼G t�pa�j t;

and so

wdðlðw2Þ þ 2p� 2 þ jkjÞ ¼ uðr� ðlðu1u0Þ þ 2ÞÞa�j t A Bðr� lðu1u0ÞÞ

as well. The four successive subpaths of d between w, these three vertices, and u have
lengths too short to allow d to leave BðrÞ. Therefore d has the required properties.

Therefore in each of Cases 1–10, either the case cannot occur or the path d with the
required properties can be constructed, completing the proof of Theorem 3.5.

4 Non-convexity properties for BS(1, q)

In the first half of this section we show, in Theorem 4.3, that the group

G :¼ BSð1; 2Þ ¼ ha; t j tat�1 ¼ a2i

with generators A :¼ fa; a�1; t; t�1g does not satisfy Poénaru’s Pð2Þ almost con-
vexity condition. We start by defining some notation. Let n be a natural num-
ber with n > 100 and let w :¼ tna2t�n and u :¼ atna2t�ðn�1Þ (see Figure 5). Then w

and u are words of length R :¼ 2nþ 2. Moreover, using Lemma 2.1, we have
wat ¼ ðaÞðtna2t�nÞt ¼G u, and so dðw; uÞ ¼ 2 and the word g :¼ at labels a path from
w to u.

Lemma 4.1. If m A Z and am is in the ball BðRÞ ¼ Bð2nþ 2Þ in the Cayley graph of G,
then either m ¼ 2nþ1 or mc 2n þ 2n�1 þ 2n�2.

Figure 5. w ¼ tna2t�n, u ¼ atna2t�ðn�1Þ
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Proof. For am A BðRÞ, Proposition 2.3 says that there is a geodesic word v in the
normal form v ¼ thast�1akh�1 t�1 . . . t�1ak0 with 2c jsjc 3 and each jkijc 1, such
that v ¼G am. This word contains 2h letters of the form tG1 and lðvÞc 2nþ 2, hence
hc n. Also v ¼G a2 hsþ2 h�1kh�1þ���þk0 ¼G am, and so m ¼ 2hsþ 2h�1kh�1 þ � � � þ k0.

If h ¼ n, then v ¼ tnaG2t�n, and so m ¼G2nþ1. If h ¼ n� 1, then there are at most
four occurrences of aG1 in the expression for v; that is, jsj þ

P
jkijc 4. The value of

m will be maximized if s ¼ þ3, kh�1 ¼ þ1, and ki ¼ 0 for all ic h� 2; in this case,
m ¼ ð3Þ2n�1 þ 2n�2 ¼ 2n þ 2n�1 þ 2n�2.

Finally, if hc n� 2, then

mc 2n�2ð3Þ þ 2n�3ð1Þ þ � � � þ ð1Þ ¼ 2n � 1

2 � 1
;

and so m < 2n þ 2n�1 þ 2n�2.

Lemma 4.2. The words w ¼ tna2t�n;wa;wa�1;wt�1 and u ¼ atna2t�ðn�1Þ label geo-

desics in the Cayley graph of G.

Proof. As a consequence of Lemma 4.1, the vertices a2 nþ1þ1 and a2 nþ1�1 are not in the
ball BðRÞ. The words tna2t�na ¼ wa and aw both label paths from the identity to

a2 nþ1þ1, and the word wa�1 labels a path from 1 to a2 nþ1�1. Each of these words has
length 2nþ 3 ¼ Rþ 1, and so all three paths must be geodesic. As a consequence, the
subwords w of wa and u of aw are also geodesic.

The element wt�1 has a geodesic normal form from Proposition 2.3 given by

v ¼ thast�1akh�1 t�1 . . . t�1ak0 t�1al

with jljc 1. Since a2 nþ1

t�1v�1 ¼G 1, Lemma 3.3 shows that al ¼ a2 i

with i A Z, and
thus l ¼ 0. Hence wt�1 is also geodesic.

Theorem 4.3. The group G ¼ BSð1; 2Þ ¼ ha; t j tat�1 ¼ a2i is not Pð2Þ with respect to

the generating set A ¼ fa; a�1; t; t�1g.

Proof. Let n A N with n > 100, w ¼ tna2t�n, u ¼ atna2t�ðn�1Þ, and R ¼ 2nþ 2. Then
w and u lie in the sphere SðRÞ and dðw; uÞ ¼ 2. Let d be a path inside the ball BðRÞ
from w to u that has minimal possible length. In particular, d does not have any
subpaths that traverse a single vertex more than once.

From Lemma 4.2, waG1 and wt�1 are not in BðRÞ, and so the first letter of the
path d must be t. Let p : C ! T denote the horizontal projection map from the
Cayley complex of G to the regular tree T of valence 3, as described at the begin-
ning of Section 2. The vertices pðwdð1ÞÞ ¼ pðtÞ and pðuÞ ¼ pðatÞ are the terminal
vertices of the two distinct edges of T with initial vertex pðwÞ ¼ pð1Þ. Since the pro-
jection of the path d begins at pð1Þ, goes to pðtÞ, and eventually ends at pðatÞ, there

must be another point P :¼ wdð jÞ along the path d with pðPÞ ¼ pðwdð jÞÞ ¼ pð1Þ and
1 < j < lðdÞ. Let d1 be the subpath of d from w to P.
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Our assumption that d has minimal possible length implies that P0 w.
Since pðPÞ ¼ pð1Þ, we have P ¼G am for some m A Z. Then Lemma 4.1 shows
that mc 2n þ 2n�1 þ 2n�2. Since d1 labels a path from a2 nþ1

to am, we have
d�1

1 ¼G a2 nþ1�m ¼ ak with k ¼ 2nþ1 �md 2n�2 > 2ðn�4Þþ1. Applying the contraposi-
tive of Lemma 4.1, we conclude that ak is not in the ball Bð2ðn� 4Þ þ 2Þ, hence
lðd�1

1 Þ > 2ðn� 4Þ þ 2. Therefore lðdÞ > R� 8, and so this length cannot be bounded
above by a sublinear function of R.

For the remainder of this section, let Gq :¼ BSð1; qÞ ¼ ha; t j tat�1 ¼ aqi with
qd 7 and with generators A :¼ fa; a�1; t; t�1g. We will apply methods very similar to
those developed above, to show that these groups are not MAC.

Lemma 4.4. If m A Z and am is in the ball BðRÞ ¼ Bð2nþ 1Þ in the Cayley graph of

Gq, then either m ¼ qn or mc 3qn�1.

Proof. For am A BðRÞ, Proposition 2.3 says that there is a geodesic word v in the
normal form v ¼ thast�1akh�1 t�1 . . . t�1ak0 with 1c jsjc q� 1 and jkijc q

2

� �
for

each i, such that v ¼G am. Then hc n and m ¼ qhsþ qh�1kh�1 þ � � � þ k0.
If h ¼ n, then v ¼ tnaG1t�n, and m ¼Gqn. If h ¼ n� 1, then there are at most 3

occurrences of aG1 in the expression for v. The value of m will be maximized if
s ¼ þ3, in which case m ¼ ð3Þqn�1. Finally, if hc n� 2, then

mc qn�2ðq� 1Þ þ qn�3 q

2

� �
þ � � � þ q

2

� �� �
¼ qn�1 � qn�2 þ qn�2 � 1

2 � 1
q

2

� �
;

and so m < 3qn�1.

Theorem 4.5. The group Gq ¼ BSð1; qÞ ¼ ha; t j tat�1 ¼ aqi with qd 7 is not MAC
with respect to the generating set A ¼ fa; a�1; t; t�1g.

Proof. Let n be a natural number with n > 100. Let w 0 :¼ tnat�n and
u 0 :¼ atnat�ðn�1Þ. Then w 0 and u 0 are words of length R :¼ 2nþ 1. As a consequence
of Lemma 4.4, an argument similar to the proof of Lemma 4.2 shows that the words
w 0; u 0;w 0aG1, and w 0t�1 are geodesics. Hence w 0 and u 0 lie in SðRÞ. Lemma 2.1 says
that w 0at ¼ ðaÞðtnat�nÞt ¼G u 0, so that dðw 0; u 0Þ ¼ 2 and the word g :¼ at labels

a path from w 0 to u 0. Let d be a path inside the ball BðRÞ from w 0 to u 0 that has
minimal possible length.

From the information on geodesics in the previous paragraph, the first letter of
the path d must be t. Let p : C ! T denote the horizontal projection map from
the Cayley complex of Gq to the regular tree T of valence qþ 1. The vertices
pðw 0dð1ÞÞ ¼ pðtÞ and pðu 0Þ ¼ pðatÞ are the terminal vertices of two distinct edges of
T with initial vertex pðw 0Þ ¼ pð1Þ. Consequently, there must be a point P :¼ w 0dð jÞ
along the path d with pðPÞ ¼ pðw 0dð jÞÞ ¼ pð1Þ and 1 < j < lðdÞ. Write d ¼ d1d2

where d1 is the subpath of d from w 0 to P.
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We have P0w 0 ¼ aqn
, and P ¼Gq

am for some m A Z, hence Lemma 4.4
shows that mc 3qn�1. The word d1 labels a path from aqn

to am, and so d1 ¼Gq
ak

with k ¼ qn �md ðq� 3Þqn�1 > 3qn�1 since qd 7. Then Lemma 4.4 says that
either k ¼ qn or ak is not in the ball Bð2nþ 1Þ.

If ak is not in the ball Bð2nþ 1Þ, then lðd1Þ > 2nþ 1 ¼ R. Note that
u 0t�1 ¼ aw 0 ¼Gq

aqnþ1. The word d2t
�1 labels a path from P ¼ am to aqnþ1, and so

d2t
�1 ¼Gq

akþ1 with k þ 1 > 3qn�1. Then lðd2t
�1Þ > R as well. Thus lðd2ÞdR and

lðdÞdRþ 1 þ R ¼ 2Rþ 1. Since there is a path w 0�1u 0 of length 2R inside BðRÞ
from w 0 to u 0, this contradicts our choice of d with minimal length.

Then the path d satisfies k ¼ qn, so that P ¼ 1. Therefore d reaches the vertex
corresponding to the identity, and the length of d is 2R.

Corollary 4.6. The properties MAC and M 0AC are not commensurability invariant,
and hence also not quasi-isometry invariant.

Proof. The subgroup of index 3 in BSð1; 2Þ ¼ ha; t j tat�1 ¼ a2i generated by a and
t3 is isomorphic to BSð1; 8Þ. Theorem 3.5 shows that BSð1; 2Þ is M 0AC and hence
MAC, and Theorem 4.5 proves that BSð1; 8Þ has neither property.

5 Stallings’ group is not MAC

In [15], Stallings showed that the group with finite presentation

S :¼ ha; b; c; d; s j ½a; c� ¼ ½a; d � ¼ ½b; c� ¼ ½b; d � ¼ 1;

ða�1bÞs ¼ a�1b; ða�1cÞs ¼ a�1c; ða�1dÞs ¼ a�1di

does not have homological type FP3. In our notation, ½a; c� :¼ aca�1c�1 and
ða�1bÞs :¼ sa�1bs�1. Let X :¼ fa; b; c; d; s; a�1; b�1; c�1; d�1; s�1g be the inverse closed
generating set, and let G be the corresponding Cayley graph of S.

Let G be the subgroup of S generated by Y :¼ fa; b; c; d; a�1; b�1; c�1; d�1g, and
let L be the corresponding Cayley graph of G. Then G is the direct product of the
non-abelian free groups ha; bi and hc; di. Let H be the finitely generated subgroup
of G given by H ¼ ha�1b; a�1c; a�1di.

Lemma 5.1. The group H consists of all elements of G that can be represented by a

word over Y of exponent sum zero. Moreover, every word, over X or Y , representing
an element of H must have exponent sum zero.

Proof. Using the fact that a commutes with both c and d, we have ca�1; da�1 A H,
and so ac�1; ad�1 A H. Using the fact that b and c commute, we have

ab�1 ¼S aðc�1cÞb�1 ¼S ðac�1Þb�1c ¼S ðac�1Þb�1ðaa�1Þc

¼S ðac�1Þða�1bÞ�1ða�1cÞ A H
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as well. Taking products of the form h�1
1 h2 with

h1; h2 A fa�1b; a�1c; a�1d; ab�1; ac�1; ad�1g

we see that l�1
1 l2; l1l

�1
2 A H for all positive letters l1; l2 A fa; b; c; dg. Finally, consider

an arbitrary word w ¼ l e1

1 . . . l enn with li A fa; b; c; dg, ei ¼G1, and
P

i ei ¼ 0. For each
i, there is a letter m A Y which commutes with both l eii and l

eiþ1

iþ1 . Repeating the tech-
nique above of inserting the inverse pair mm�1 between l eii and l

eiþ1

iþ1 and applying the
commutation relations as needed, we can write w as a product of elements of expo-
nent sum zero of the form m1m2 with mi A Y . Then w A H. The second sentence of
this lemma follows from the fact that the exponent sum for each of generators of H
and each of the relators in the presentation for S is zero.

Let f : H ! H be the identity function. Then S is the HNN extension S ¼ G?f
with stable letter s, and s commutes with all of the elements of H.

Lemma 5.2. Let w A X �.

(1) If w is a geodesic in G, then the word w cannot contain a subword of the form sus�1

or s�1us with u A H.

(2) If w A G and w is a geodesic in G, then w A Y � and w is a geodesic in L.

(3) If w A Y � and w is a geodesic in L, then w; sw and ws are all geodesics in G.

Proof. Part (1) follows directly from the fact that for u A H, sus�1 ¼S s�1us ¼S u. In
parts (2) and (3), suppose that g A G, v is a geodesic word over X in G representing g,
and w A Y � is a geodesic in L with w ¼ g also. Then vw�1 ¼S 1. Britton’s Lemma
applied to the HNN extension S says that if either s or s�1 occurs in vw�1, then vw�1,
and hence v, must contain a subword of the form sus�1 or s�1us with u A H, contra-
dicting part (1). Therefore v A Y �. Since v;w A Y � and v is is a geodesic in L, then
lðvÞc lðwÞ Similarly since v;w A X � and w is a geodesic in G we have lðwÞc lðvÞ.
Thus v is also a geodesic in L, and w is a geodesic in G.

For the remainder of part (3), suppose that m is a geodesic representative of sw in G.
Then w�1s�1m ¼S 1. Britton’s Lemma then says that w�1s�1m must contain a sub-
word of the form sus�1 or s�1us with u A H. Since m is a geodesic, part (1) says that
sus�1 or s�1us cannot be completely contained in m, and so we can write m ¼ m1sm2

with m1 A H. Since m1 and s commute, sm1m2 ¼S m ¼S sw, hence m1m2 ¼S w and both
m1m2 and w are geodesics representing the same element of G. Hence lðm1m2Þ ¼ lðwÞ.
Then

lðmÞ ¼ lðm1Þ þ 1 þ lðm2Þ ¼ lðwÞ þ 1 ¼ lðswÞ;

and so sw is a geodesic in G. The proof that ws is also a geodesic in G is similar.

The proof of the following theorem relies further on the HNN extension structure
of Stallings’ group S. In particular, we utilize an ‘s-corridor’ to show that the path d

in the definition of MAC cannot exist.

Murray Elder and Susan Hermiller262

Brought to you by | University of Newcastle, Australia (University of Newcastle, Australia)
Authenticated | 172.16.1.226

Download Date | 4/3/12 7:46 AM



Theorem 5.3. ðS;XÞ is not MAC with respect to the generating set X .

Proof. Let a :¼ b�ðnþ1Þanþ1 and b :¼ sb�ðnþ1Þan, and let w ¼ b�ðnþ1Þan be their maxi-
mal common subword. Then a A Y �, and so a A G; in particular, the exponent sum of
a is zero, so Lemma 5.1 says that a A H also. Since a is a geodesic in the Cayley graph
L of the group G ¼ F2 � F2, Lemma 5.2(3) says that a is a geodesic in G. Similarly, w
is a geodesic in L and so Lemma 5.2(3) says that b ¼ sw is also geodesic in G. Thus a
and b lie in the sphere of radius 2nþ 2 in G. Since

a�1b ¼ a�ðnþ1Þbnþ1sb�ðnþ1Þan ¼S sa�ðnþ1Þbnþ1b�ðnþ1Þan ¼S sa�1;

we have dða; bÞ ¼ 2 for all natural numbers n.
Suppose that there is a path d of length at most 2ð2nþ 2Þ � 1 inside the ball of

radius 2nþ 2 between a and b. Since the relators in the presentation of S have even
length, the word d must have length at most 2ð2nþ 2Þ � 2 ¼ 4nþ 2.

Applying Britton’s Lemma to the product das�1 ¼S 1 shows that d ¼ w1sw2

with w1; w2a A H. Then w1;w2 A G ¼ F2 � F2. Lemma 5.2(2) and the direct
product structure imply that there are geodesic representatives q1 and q2 of w1

and w2, respectively, that have the form q1 ¼ q1a; bq1c;d and q2 ¼ q2c; d q2a; b with
q1a; b ; q2a; b A fa; b; a�1; b�1g� and q1c; d ; q2c; d A fc; d; c�1; d�1g�.

Since a and q1 ¼ w1 are both elements of H, we have aq1 A H as well. From the
direct product structure, there is a geodesic representative s A Y � of aq1 of the form
s ¼ sa;bsc;d with sa;b A fa; b; a�1; b�1g� and sc;d A fc; d; c�1; d�1g� (see Figure 6).

The edge in G labeled by s connecting s and ss is part of the path d, and so this
edge must lie in the ball of radius 2nþ 2 in G. Lemma 5.2(3) says that ss is a geode-
sic, hence

dð1; sÞ þ 1 ¼ lðsÞ þ 1 ¼ lðssÞ ¼ dð1; ssÞc 2nþ 2:

Then s A Bð2nþ 1Þ and lðsÞc 2nþ 1.

Figure 6. Paths in the Cayley graph of Stallings’ group
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Now lðq1Þ þ 1 þ lðq2Þc lðdÞc 4nþ 2, and thus either lðq1Þc 2n or lðq2Þc 2n (or
both).

Case A: lðq1Þc 2n. Note that

aq1s
�1 ¼ b�ðnþ1Þanþ1q1a; bq1c;ds

�1
c;ds

�1
a;b ¼F2�F2

1:

Hence q1c;d ¼F2
sc;d and aq1a; b ¼F2

sa;b. Since geodesics in free groups are unique, we
also have q1c;d ¼ sc;d .

There is an integer i1 with 0c i1 c 2n such that

q1a; bði1Þ ¼ a�1ði1Þ but q1a; bði1 þ 1Þ0 a�1ði1 þ 1Þ;

where we write q1a; bð0Þ :¼ 1 and q1a; bðkÞ :¼ q for all k > lðq1a; bÞ. Write q1a; b ¼ a�1ði1Þr
with r A F2 ¼ ha; bi. The words a; q1a; b , and sa;b are all geodesic representatives of
elements of the free group F2, and hence these are freely reduced words that define
non-backtracking edge paths in the tree given by the Cayley graph for this group. By
definition of i1, the product aq1a; b freely reduces to að2nþ 2 � i1Þr, with no further
free reduction possible. Then að2nþ 2 � i1Þr is the unique geodesic representative in
F2 ¼ ha; bi of aq1a; b , and hence að2nþ 2 � i1Þr ¼ sa;b.

Case A.1: i1 c nþ 1. In this case, q1a; b ¼ a�i1r. Now q1 ¼ q1a; bq1c; d ¼ a�i1rq1c; d repre-
sents an element of H, and so Lemma 5.1 says that q1 has exponent sum zero. Then
lðrq1c; d Þd i1. We also have s ¼ sa;bsc;d ¼ að2nþ 2 � i1Þrq1c; d . Then

lðsÞd ð2nþ 2 � i1Þ þ i1 ¼ 2nþ 2;

contradicting the result above that lðsÞc 2nþ 1. Thus this subcase cannot occur.

Case A.2: i1 > nþ 1. In this case, sa;b ¼ b�ð2nþ2�i1Þr. Since

s ¼ sa;bsc;d ¼ b�ð2nþ2�i1Þrsc;d

represents an element of H, this word has exponent sum zero, and so
lðrsc;dÞd 2nþ 2 � i1 in this subcase. The word q1 ¼ q1a; bq1c; d ¼ a�1ði1Þrsc;d then has
length

lðq1Þd i1 þ ð2nþ 2 � i1Þ ¼ 2nþ 2;

contradicting the fact that we are in Case A.

Case B: lðq2Þc 2n. Since s A H, s commutes with s. Then

s ¼S s�1ss ¼S s�1aq1s ¼S s�1aq1sq2q
�1
2 ¼S s�1bq�1

2 ¼S wq�1
2 :
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In this case we have sa;bsc;d ¼F2�F2
b�ðnþ1Þanþ1q�1

2a; b
q�1

2c;d , and so q�1
2c;d ¼F2

sc;d and

wq�1
2a; b

¼F2
sa;b. Uniqueness of geodesics in F2 ¼ hc; di implies that q�1

2c;d ¼ sc;d .

There is an integer i2 with 0c i2 c 2n such that

q�1
2a; b

ði2Þ ¼ w�1ði2Þ but q�1
2a; b

ði2 þ 1Þ0 w�1ði2 þ 1Þ:

Write q2a; b ¼ rðw�1ði2ÞÞ�1 with r A F2 ¼ ha; bi. The words w; q2a; b , and sa;b are all
geodesics, and hence freely reduced words, in F2. By definition of i2, the product
wq�1

2a; b
freely reduces to wð2nþ 1 � i2Þr�1, with no further reduction possible. Then

wð2nþ 1 � i2Þr�1 ¼ sa;b.

Case B.1: i2 c n. In this case, q2a; b ¼ rai2 . Now q2 ¼ q2c; d q2a; b ¼ q2c; d ra
i2 . Recall that

q2 was chosen as a geodesic representative of an element w2 A G for which w2a A H.
Then q2a represents an element of H, and so (by Lemma 5.1) has exponent sum zero.
Therefore the exponent sum of q2 is �1. Then lðq2c; d rÞd i2 þ 1. We also have

s ¼ sa;bsc;d ¼ wð2nþ 1 � i2Þr�1q�1
2c; d

:

Then

lðsÞd ð2nþ 1 � i2Þ þ ði2 þ 1Þ ¼ 2nþ 2;

again contradicting the result above that lðsÞc 2nþ 1.

Case B.2: i2 > n. In this case, sa;b ¼ b�ð2nþ1�i2Þr�1. Since

s ¼ sa;bsc;d ¼ b�ð2nþ1�i2Þr�1sc;d

represents an element of H, this word has exponent sum zero, so that
lðr�1sc;dÞd 2nþ 1 � i2 in this subcase. Therefore the word

q2 ¼ q2c; d q2a; b ¼ s�1
c;drðw�1ði1ÞÞ�1

has length lðq2Þd ð2nþ 1 � i2Þ þ i2 ¼ 2nþ 1, contradicting the fact that we are in
Case B.

Therefore every subcase results in a contradiction implying that the subcase cannot
occur. Then the path d cannot exist, and so S is not MAC with respect to the gen-
erating set X .
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